
Rootkits - Detection and prevention

André Jorge Marques de Almeida

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática e de Computadores

Júri

Presidente: Professor Jose Carlos Martins Delgado
Orientador: Professor Carlos Nuno da Cruz Ribeiro
Vogal: Professor Miguel Pupo Correia

Setembro 2008

Agradecimentos

Tenho a agradecer ao meu Orientador, o Professor Carlos Ribeiro, pela coragem em alinhar nesta minha

ideia arrojada de explorar um tema tão obscuro, invulgar e complexo como este. Por outro lado, apoiou-

me e ajudou-me a estruturar a dissertação e a definir os objectivos deste trabalho, algo que me preocu-

pava desde inı́cio.

Grande parte desta dissertação foi estudada e escrita no Tagus Park juntamente com outros amigos

meus destinados ao mesmo: São eles o Henrique Costa (que teve a paciência rara de ler esta dissertação

e me indicar aspectos a melhorar), o Nuno Monteiro e o João Mendes, que vendo as suas férias limitadas

por causa da dissertação, ajudaram-me a tornar mais leve a execução de um trabalho desta dimensão.

Devo agradecimentos ao Daniel Almeida, ao Sérgio Almeida e ao Telmo Rodrigues pelas constantes

dicas e ideias que me forneceram durante várias discussões que tivemos sobre estes temas, e agradeço

incondicionalmente ao meu irmão, Filipe Almeida, por dispensar um pouco do seu precioso tempo para

ler esta dissertação e me indicar vários pontos a melhorar, não só ao nı́vel da qualidade da escrita mas

também do conteúdo.

Seria quase criminoso, abandonar esta secção sem agradecer ao meu Pai e à minha Mãe. Quero

agradecer aos meus pais por terem feito os possı́veis ao seu alcance para me ajudarem. Uma vez que

não dominavam o assunto, ajudaram-me em pormenores de escrita e de construção frásica.

Lisboa, November 23, 2008

André Jorge Marques de Almeida

Abstract

This thesis pretends to explore the underworld of the complex and unwanted software that subtly mod-

ifies the behavior of the operating system without users or administrators notice. This type of software

is named “Rootkit”. This thesis does not pretend to promote the creation of these type of attacks, but

instead, help building defenses. No defense is successful if we don’t study first the point of view of the

attacker. It is precisely in this way that this work is presented: For each defense, many attack vectors

possibly used by the attacker are presented to the reader, creating room for understanding what follows.

After that, without neglecting the other side, the evidences left by the rootkits are studied and analyzed,

in an attempt to prevent their respective attack in the future.

This essay starts outlining some Rootkit techniques commonly used in Windows operating system,

with the objective of understanding where and how these methods can be applied in Linux. “Hooking”

techniques are a powerful method not only for those who attack but also for those who defend. Thus,

their relevance in this work. Hooking is a technique that intercepts the execution flow of an application,

or even Kernel, and allows the attacker to obtain important data or modify information.

It is interesting to notice the multiple places of an operating system sensible to “Hooking”. Either in

User-mode or in privileged mode, there are crucial zones sensible to slight changes, creating a different

global behaviour of the system, helping the attacker covering his tracks. This way, the system will

provide false information for an application that requests some state of the operating system.

Fortunately, knowing the inner-workings of these subversive programs, we can detect their pres-

ence if they are installed. Typically, it is always possible to detect traces of intrusion, but depending on

the technological advance of the Rootkit, this can be an extremely difficult task.

This work shows the efficiency and the dangerousness of the technique “Hardware Breakpoint

Hooking”, and also presents a method for detecting and preventing this same technique (but not infalli-

ble). Additionally, code modification attacks in user-mode are studied, to which are proposed a memory

scanning tool. Finally, a proactive detection mechanism is presented which scans many sensitive places

of the operating system during its operation.

Resumo

Esta dissertação pretende explorar o submundo do complexo software indesejado que modifica subtil-

mente o comportamento do sistema operativo sem que o utilizador ou administrador se aperceba. A

esse tipo de software dá-se o nome de “Rootkit”. O objectivo desta dissertação não é o de fomentar

a criação deste tipo de ataques, mas antes pelo contrário, ajudar a criar defesas. Nenhuma defesa é

bem conseguida se não estudarmos primeiro o ponto de vista do atacante. É precisamente desta forma

que este trabalho é apresentado: Para cada defesa, são primeiro apresentados ao leitor as várias ver-

tentes que podem ser utilizadas pelo atacante, criando assim espaço para a compreensão do que vem a

seguir. Posteriormente, sem descurar o lado oposto, são apresentadas as alternativas e estudadas todas

as evidências deixadas pelos rootkits, numa tentativa de as aproveitar para que o seu respectivo ataque

possa ser prevenido no futuro.

Esta dissertação começa por enunciar várias técnicas de Rootkits vulgarmente utilizadas no sistema

operativo Windows, com o objectivo de perceber onde e como é que estas podem ser aplicadas no sis-

tema operativo Linux. As técnicas de “hooking” são tranversais a todo este trabalho e são um método

poderoso tanto para quem ataca como para quem defende, daı́ a sua relevância nesta dissertação. Hook-

ing não é mais do que uma técnica que permite interceptar o fluxo de execução de uma aplicação ou até

mesmo do Kernel, permitindo a quem a utiliza, obter dados importantes ou modificar essa mesma

informação.

É interessante notar os múltiplos pontos sensı́veis do sistema operativo onde se podem instalar

“Hooks”. Tanto em modo utilizador como em modo privilegiado, existem várias zonas cruciais no

sistema operativo que podem ser sujeitas a ligeiras alterações, originando um comportamento global do

sistema diferente, que irá favorecer o atacante. Deste modo, o sistema irá fornecer informação falsa para

uma aplicação que queira saber como se encontra o estado do sistema.

Felizmente, conhecendo o funcionamento destes programas subversivos podemos detectar a sua

presença caso estes estejam instalados. Tipicamente, é sempre possı́vel detectar vestı́gios de intrusão

no sistema, mas dependendo do avanço tecnológico do Rootkit, pode ser extremamente difı́cil de o

conseguir.

Este trabalho demonstra a eficácia e a perigosidade da técnica “Hardware Breakpoint Hooking”, e

apresenta um método de detecção e prevenção dessa mesma técnica (não infalı́vel). Adicionalmente, são

estudados os ataques que implicam modificação de código de aplicações em modo utilizador, aos quais

é apresentada uma ferramenta de rastreio de memória. Por fim, é apresentado um sistema de detecção

de rootkits proactivo que inspecciona vários pontos fundamentais do sistema operativo, durante a sua

operação.

Palavras Chave

Keywords

Palavras Chave

Segurança

Prevenção

Detecção

Sistema

Intrusão

Subversão

Keywords

Security

Prevention

Detection

System

Intrusion

Subversion

Index

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Structure of the Document . 2

2 State of the Art 3

2.1 Introduction . 3

2.2 General Malware Classification . 3

2.3 How do Rootkits work . 5

2.3.1 Application level . 5

2.3.2 Library level . 5

2.3.3 Kernel Level . 5

2.4 Hiding techniques . 6

2.4.1 Hooking . 6

2.4.1.1 What to hook? . 6

2.4.1.2 How to hook? . 7

2.4.2 Direct Kernel Object Manipulation . 8

2.4.3 Raw access to the physical memory . 8

2.4.4 Layered Filter Drivers . 9

2.4.5 DLL/Code Injection . 9

2.5 Detecting and Preventing . 10

2.5.1 Signature based detection . 10

i

2.5.2 Heuristic based prevention . 11

2.5.3 Integrity Check detection . 11

2.5.4 Crossview based detection . 11

2.5.5 Detecting DKOM . 12

2.5.6 Detecting Hooks . 13

2.6 Anti-Rootkit Software Analysis . 14

2.6.1 System Virginity Verifier . 14

2.6.2 Tripwire . 15

2.6.3 VICE . 15

2.6.4 Hijacking anti-rootkit software . 15

2.7 Summary . 16

3 User-Land 17

3.1 Introduction . 17

3.2 Accessing the address space of a process . 18

3.3 Hooking techniques . 19

3.3.1 Function hooking via code section modification . 19

3.3.2 PLT Injection . 21

3.3.3 Hardware breakpoint hooking . 22

3.4 Defenses . 25

3.4.1 Detecting program byte code changes . 25

3.4.1.1 Understanding memory mapping . 26

3.4.1.2 Using /proc/<pid>/maps . 27

3.4.1.3 Finding .text section offset in memory . 28

3.4.2 Detecting and preventing Hardware Breakpoint Hooking 30

3.4.2.1 Finding sys call table in Linux Kernel 2.6 30

3.4.2.2 Formulating a pattern for detection . 31

3.5 Summary . 32

ii

4 Kernel-Land 33

4.1 Introduction . 33

4.2 Attacking the Kernel . 33

4.2.1 Simple system call redirection . 34

4.2.2 Inline hooking Kernel functions . 34

4.2.3 Hooking interrupt 0x80 / Sysenter instruction . 35

4.2.4 Runtime Kernel patching . 36

4.3 Detecting the attacks . 37

4.3.1 Kernel Integrity Checking . 37

4.3.2 A Proactive Detection Approach . 38

4.4 Summary . 41

5 Results and discussion 43

5.1 Introduction . 43

5.2 Process code integrity scanner . 43

5.2.1 Execution . 43

5.2.2 Problems . 44

5.2.3 Other approaches . 45

5.3 Hardware breakpoint hooking attack . 45

5.3.1 Execution . 45

5.3.2 Analysis of stealth . 46

5.4 Preventing hardware breakpoint hooking . 46

5.4.1 Execution . 47

5.4.2 Problems . 47

5.5 Kernel Proactive Detection Approach . 48

5.5.1 Execution . 48

5.5.2 Performance Tests . 50

iii

5.5.3 Problems . 50

5.6 Summary . 51

6 Conclusions 53

6.1 Future Work . 54

I Appendices 59

Glossary 88

iv

List of Figures

2.1 Malware classification . 4

2.2 DKOM Attack . 12

3.1 Hooking SSH Daemon . 18

3.2 Inline hooking . 20

3.3 Inline hooking (variant) . 21

3.4 Hardware Breakpoint Hooking . 25

3.5 ELF Format Structure . 27

3.6 Hardware Breakpoint Detection Automaton . 32

4.1 Kernel Attacks - The Big Picture . 34

4.2 Kernel Proactive Detection System . 39

5.1 Detecting system call redirection attack . 49

v

vi

List of Tables

2.1 Detection software . 14

3.1 Description of the debug registers . 22

4.1 Correspondence between each system check and Kernel attack 41

5.1 Performance tests . 50

vii

viii

1Introduction

Your computer can be doing absolutely anything to anybody anywhere, and you’ll never know it

– Rick Cook

This chapter acts as a prelude for this thesis beginning with a short motivational introduction, fol-

lowed by a description of the goals of this work and finalizing with the roadmap of this thesis.

1.1 Motivation

The term rootkit originated in the mid-nineties. The idea was based on a set of tools (kit) whose purpose

would be to subvert the system in order to change some of its original behavior. Usually these tools

would maintain covert root access to a system and hide the intruder’s presence. This is why the resulting

term is rootkit.

A rootkit tries to remain undetected by using techniques to hide parts of the system to a User-land

program. It may hide files on the hard drive, running processes, active network connections or any

other element that may reveal unauthorized activity.

The complexity of a rootkit depends on the technique it uses to achieve its stealth to avoid detection.

The application of these techniques requires deep knowledge of the operating system and advanced

programming skills. Depending on how advanced the rootkit is, it is important to understand memory

layout, kernel objects, file and network drivers, privilege levels; some of them are not documented.

Typically, a User-land rootkit is much simpler than a Kernel-land rootkit. On the other hand, enter-

ing the kernel is a whole new world of endless possibilities. For a security expert that knows the depths

of the operating system, accessing the memory without constraints will make him find many different

ways to subvert it in order to achieve stealthiness.

Rootkits are constantly evolving and they will become a serious threat in the future, if they aren’t

yet. Every year, new pioneering techniques are demonstrated at security conferences around the globe,

and we are starting to see anti-rootkit technologies implanted in anti-virus solutions.

The latest advance has been in virtualization techniques (Microsoft, 2006), which by taking advan-

tage of virtualization technology, rootkits manage to avoid mainstream detection algorithms as they

take the place of the virtual machine supervisor. This allows them to monitor and intercept all hard-

ware calls initiated by the guest operating system. The main purpose of this thesis is to identify current

rootkit technologies, and provide solutions (or mitigating techniques) for them, discussing the pros and

cons.

1.2 Goals

This document pretends to explore some advanced hiding technologies used in rootkits along with

solutions to detect and prevent these abuses.

Some hooking techniques used on windows operating system to intercept application function calls

at runtime seem to be forgotten on Linux. This article intends to prove that they are possible and also

deserve as much attention from the security perspective as the other known hiding techniques.

The system call invocation mechanism contains many weak places that rootkits can explore in order

to subvert the original system’s behavior. The system call table and the interrupt descriptor table belong

to the most common attack vectors used from rootkits. This work intends also to detect and/or prevent

these attacks with the final goal of improving the security of the Linux operating system.

1.3 Structure of the Document

Chapter 2 starts with the state of the art in what concerns to rootkit technologies; chapter 3 shows differ-

ent methods for accessing the memory address space of a process, and ilustrates different ways of hook-

ing a function call, terminating with solutions to test the integrity of the running applications; chapter 4

introduces the old-age art of system call redirection, making also reference to interrupt descriptor table

redirection and presenting solutions, once again, for its detection and prevention.

Finally, this work ends in chapter 5 with a discussion of the results taken from this study along with

future work and conclusions.

2

2State of the Art

By playing the part of an attacker, we are always at an advantage. As the attacker we must think of only one

thing that a defender didn’t consider.

– Greg Hoglund and James Butler

2.1 Introduction

This section presents the state of the art in what concerns to rootkit technologies. To ease the under-

standing of the following chapters, this one gives particular relevance to windows operating system

since part of this thesis resides in the exploration of existing windows rootkit techniques on Linux.

This chapter starts with a classification of malware followed by a brief introduction of the general

inner working mechanisms of a rootkit; Next, some hiding techniques are uncovered and state of the

art defenses are described for each hiding method; finally, a comparative study shows the strengths and

weaknesses of some existing anti-rootkit software and the conclusions of this chapter.

2.2 General Malware Classi�cation

The following classification was made by Joanna Rutkowska, a Polish security expert known for her

research of stealth malware and contributions concerning improvement of Windows Vista security.

Rutkowska’s paper (Rutkowska, 2006) makes use of this taxonomy to explain different rootkit tech-

niques and their respective counter measure. Before delving further into the details, it is important to

understand this classification. Instead of classifying malware in categories such as Virus, Worms, Spy-

ware, Backdoors, etc...; Rutkowska decided to create a �big picture� of malware which will certainly

help creating our defenses against these threats. Figure 2.1 shows each type of malware.

Malware Type 0 Type 0 is malware which does not modify the system in any way, meaning that the

other applications don’t change their behavior. Malware inside this category is not considered a

rootkit since it does not use any kind of system subversion technique to hide itself and remain

undetected.

3

Figure 2.1: Malware classification

Malware Type 1 This type of malware modifies sections that are not generally changed by legit appli-

cations, such as code sections within executable files and BIOS code.

Since these areas should never change, a good approach for detecting this malware is in integrity

checkers. Integrity checkers are covered later in 2.5.3.

Malware Type 2 Type 2 malware involves modification of regions that should be changed, typically

configuration files, registry data and data sections of running processes and Kernel. The attackers

challenge here is to identify dynamic regions of the system in order that he can take advantage

of. Since these areas are expected to be modified over time, it is extremely hard to detect every

system change that can be potentially harmful. Integrity checkers are unsuccessful in detecting

this category of malware, instead, we need to identify all dynamic sections of running applications

and Kernel, and understand them, in order to determine any potentially installed malware.

Despite being the perfect solution, this task is not practical to achieve. This would require the cre-

ation of an extensive list with all the sensitive dynamic places, together with their corresponding

verification method.

However, it’s not possible to determine all those sensitive places (not even by Microsoft). Software

is constantly evolving, with regular upgrades being distributed to the public which provide new

veiled methods for a rootkit to hide.

Malware Type 3 This type of malware is the latest advance in rootkit technology. This kind of rootkit,

known as Hypervisor rootkit, does not change a single bit of the operating system. Instead, it

4

acts from the outside as a host machine making use of the virtualization features provided by the

processor, intercepting all hardware calls made by the guest OS.

Detection of this technique is a heated discussion among nowadays security researchers. Most (if

not all) methods presented detect the presence of a virtual machine but cannot tell if the virtual

machine is legitimate, or if it is a rootkit. In the future most enterprise solutions will be based on

virtualization technology, which is why these detection methods are not enough.

2.3 How do Rootkits work

2.3.1 Application level

Binary kits are a set of tools designed to replace, without authorization by the systems owner, the system

binaries in order to change the original information flow from Kernel to user applications. Typically, the

information concealed is the information revealing the presence of unauthorized activity, so the user will

not suspect of an intrusion. These types of attacks are mostly used in Linux, where the code is open-

source and the system tools are easy to alter. In later versions of Windows, system files are protected (for

instance, Windows XP uses Windows File Protection), and thus, these tools are harder to be subverted.

2.3.2 Library level

Library level rootkits are those which intercept library calls, by hooking or replacing the libraries.

Library replacement is usually associated with library kits. Library kits attempt to replace system

libraries in order to intercept important functions. For example, in Linux, the T0rn 8 rootkit (Miller, 2000)

replaces the “libproc.a” library, which is used to find information from /proc file system to get access to

process information from the Kernel, which can be gathered by simple system tools like /bin/ps and top.

Another alternative is to modify the glibc/libc main system library in order to filter the information

exchanged between user and Kernel-land.

Once again, in Windows, system libraries are system files, which are generally protected by the

operating system, so it is more viable to make the library interception by entering the address space of

the processes and hooking the desired functions. Hooking is covered later in 2.4.1.

2.3.3 Kernel Level

Kernel level rootkits use some way to get into Kernel space and directly add and/or replace code to

the operating systems core. In Windows, most Kernel rootkits make use of device drivers, while under

5

Linux, they use Loadable Kernel Modules (LKM). LKM rootkits were for a long time the favorite ap-

proach for the attackers who wanted to have control at Kernel level in Linux systems. An LKM rootkit

does not require much knowledge to be implemented, the addresses of the system calls are accessible

via the sys call table array and it’s easy to redirect system call functions to point to our code by making

use of this array. However, since Kernel 2.6 that the sys call table array is not exported which means

that an attacker will have additional work searching for a reference to it. The system owner can defeat

LKM rootkits by simply disabling Kernel module loading support before compiling the Kernel. Nev-

ertheless, it is not mandatory the use of these Kernel extensions to access the system core, as explained

later in 2.4.3.

2.4 Hiding techniques

2.4.1 Hooking

One of the techniques a rootkit may employ to shift the execution flow of the operating system is hook-

ing.

The main goal of hooking is to alter the information returned by the system, or provide the system

with altered information from the calling application.

Due to system flexibility and backward compatibility, there are many ways a system can be hooked.

Hooks can be installed in user land or in Kernel-land and they can be considered malware type 1 or 2,

depending on which technique is used. All the methods require certain knowledge of the function being

intercepted.

2.4.1.1 What to hook?

The potential interests of a rootkit can be the following: Hide files, registry information, processes,

network connections, drivers, etc. All of this can be accomplished with hooking.

For instance, in Windows, a user land rootkit may want to hide itself by intercepting the correct

system API call that reveals its presence.

A good target would be TaskMgr.exe, the windows task manager. What the rootkit would have to do

was enter the process address space, and intercept the call to the NtQuerySystemInformation function in

ntdll.dll, by hooking it and filtering the response from the system.

Ntdll.dll is a system support library which provides dispatch stubs to windows executive system ser-

vices that will pass control to SSDT (system service dispatch table), in Kernel-land, where the actual

work is performed.

6

The only problem arising from this method is that while the windows task manager gets subverted,

any other application will be able to detect the rootkit executable, meaning the hook is only installed

for the process TaskMgr.exe. For the hook to be system wide, there are two options: Hook all processes,

which is not a very stealthy option, or go deeper into the system and install it at Kernel-land. To accom-

plish this, it is important to understand the execution flow of a process enumeration request to Kernel,

find out where to hook, and how to hook.

It is possible to hook one of multiple functions to successfully hide our process, but if we are work-

ing in user-land, a good choice is NtQuerySystemInformation, since this is the deepest we can go before

entering the Kernel. In Kernel-land, the system call ZwQuerySystemInformation in the SSDT table would

be a good place to hook.

2.4.1.2 How to hook?

I will enumerate some hooking techniques focusing on Windows operating system, with a brief descrip-

tion for each one:

Inline Hooking This technique, also known as trampolining, patches the first bytes of the function to

hook with a jmp instruction pointing to our function. Overwritten bytes are backed up, and exe-

cuted inside our intercepting function in a different place, right before calling the original function

(trampoline). We can change the information returned by the original function or provide differ-

ent arguments to it. Microsoft’s research group has released a library called Detours (Corporation,

n.d.), which is a handy utility to ease the use of hooking.

Function pointer table hooking This technique outlines any hook based on dispatch table modifica-

tion. The idea is to change a function pointer from a table, making it point to our function instead.

Potential tables to place hooks are:

1. System Service Descriptor Table (SSDT) – The system call table. Due to its system wide im-

pact, SSDT hooking is not only used in rootkits, but also in anti-rootkits. A system abuse can

be predicted by analyzing what system calls are being used.

2. Interrupt Descriptor Table (IDT) – Allows interception of system interrupts. Since each pro-

cessor has its own IDT, a rootkit will have to hook this table into all processors.

3. IRP tables – Device drivers communicate via IRPs (Input/Output Request Packets). Each

packet type is handled by a proper function, which is saved in the IRP table. IRP table hook-

ing aims to intercept driver requests such as reads, writes and queries. Since drivers are

extremely low level, IRP hooking is a good place to hide a rootkit.

7

4. Import Address Table (IAT) – Table containing pointers to all functions inside each module,

within a process.

Hardware Breakpoint Hook This is an unusual technique based in the use of debug registers. Intel

x86 CPUs have special registers intended for debug use only. By storing special values into these

registers, the CPU can execute an INT 1 (interrupt 1) instruction just before any read, write, or

execute attempt to a specific memory location. Through the help of structured exception handler

(SEH), a routine is specified to handle the exception raised by interrupt 1. Once in this routine, we

can change the extended instruction pointer register (EIP) to point to our function, thus changing

the natural execution flow of the thread. When inside our function, if we want to execute the

original (hooked) function, the hardware breakpoint has to be removed before, and restored after

the call, to avoid entering in an endless recursive loop.

This method slows down the execution speed of the process being hooked because of the interrupt

cost. On the bright side (from the attackers perspective), there is not a single byte changed in the

code, so the code sections remain untouched.

2.4.2 Direct Kernel Object Manipulation

Windows Kernel stores important information in Kernel objects for book-keeping and reporting. These

objects are no more than Kernel structures, holding what the system believes exists on the system. Direct

Kernel Object Manipulation (DKOM) works by taking advantage of this fact.

The correct way to access a Kernel object is by using the Object Manager. Object Manager eases

the access to an object, such as creation, deletion and protection. DKOM accesses the object directly,

bypassing the Object Manager and thus all access checks to the object.

A rootkit that uses DKOM will subvert these objects and force the system to believe it is in a different

state. The strongest countermeasure of using DKOM relies on the fact that the attacker must know

how the structure is built, and this requires hours of debugging. Successfully exploitation of DKOM

can result in hiding processes, device drivers and network ports. There are other system changes the

attacker may find useful, such as privilege elevation of a process.

This technique is considered malware type 2, and is extremely difficult to detect, since all the ma-

nipulated sections are dynamic.

2.4.3 Raw access to the physical memory

It is possible to access Kernel memory without the need of drivers (Windows) or Kernel modules (Linux)

by making use of the physical memory device.

8

In Windows, the \Device\PhysicalMemory section object provides access to physical memory from

the user mode, specifically from the Administrators group, however, in Windows XP 64-bit, Windows

2003 Server SP1, and Windows Vista, all user mode access to this device has been blocked.

For translation between virtual memory to physical memory, a good memory layout understand-

ing is required, and it is important to keep in mind that the memory model varies between windows

versions.

W32/FanBot.A@mm (Florio, 2005) is a well written worm that uses this technique to perform the

DKOM technique. In what concerns to Linux, since nearly the beginning that some character devices,

called /dev/mem and /dev/kmem, are available to privileged applications. Despite /dev/kmem not being a

physical address, it contains the whole Kernel memory which can be manipulated by a rootkit. SucKIT

rootkit makes use of this device to intercept the system call table. Additionally, /dev/mem device provides

raw access to any physical page. Once again, it’s important to understand the UNIX memory model.

2.4.4 Layered Filter Drivers

Another alternative for intercepting the natural execution flow of a Windows system is by using filter

drivers. Layered filter drivers can extend the original features of a driver without having to rewrite it

from scratch. More importantly, there is no need to understand the complexity of the hardware.

This technique is a flexible solution for extending driver functionality that can be used for good and

evil. Many virus scanners attach a layered filter driver on the top of the file system driver, for scanning

files as soon as they are accessed and before they are passed to the user land application or get executed.

On the other hand, a rootkit can take advantage of this for stealth purposes by intercepting and

modifying the information coming in and out from the lower-level hardware, changing for instance:

file data, file enumeration and network connections. A good example of a rootkit using this method is

KLOG (Clandestiny, n.d.). KLOG is a smart approach for a keylogger: Works by attaching a filter driver

to the keyboard driver, and monitoring all the keystrokes typed.

2.4.5 DLL/Code Injection

Dynamic-link library (DLL) injection works on any operating system supporting shared libraries, but

we will focus on Windows. Despite not being seen as a rootkit, it can be used to drop a relatively

stealthy peace of code running into another process. There are many ways to force a DLL to be loaded

on a remote process and nowadays this is becoming a very common technique for hiding malware. This

is why DLL Injection is getting attention from the security community and its detection and prevention

is getting studied with great results.

9

Code injection has some advantages over DLL Injection since it does not insert a new module in

the target process. Instead, it injects just the necessary executable code into the target process, and

then starts a new thread at the beginning of the code. It is a stealthier technique, however, one should

be careful since the imported function addresses will not be correctly resolved. This means we will

have to manually load every DLL whose function we want to use with LoadLibrary(), and then get their

respective address with GetProcAddress(). LoadLibrary and GetProcAddress function pointers are correct

because they reside in Kernel32.dll, which has the same base address on all processes.

In DLL Injection we don’t have this problem because every function address is loaded when the

portable executable file (DLL) loads in the target process. Note that, in both techniques, a new thread

does not have to be necessarily created, an existing thread can be hijacked, but this can be dangerous

unless the attacker knows that the thread is safe to be hijacked. Note that once we are inside the target

process’s address space, we can hijack library calls with hooking.

There are several ways of injecting DLL/code into another process, most of them are easily detected

by the majority of anti-virus proactive defense solutions.

2.5 Detecting and Preventing

At the beginning of 2005, host based detection and prevention systems (HIDS and HIPS) concerning

rootkit technologies started to become popular, and many companies launched their products in a re-

sponse to this threat: F-Secure, Kaspersky, Microsoft... etc.

First of all, it’s important to clarify the difference between detection and prevention:

Detection assumes that the system may already be infected, and searches for signs of known techniques,

while prevention analyzes the application’s execution flow in order to avoid hostile activities, or checks

what applications are about to run (anti-virus products). No matter which side we choose, both repre-

sent added value towards best-practices on host based security.

2.5.1 Signature based detection

Signature based detection works like a fingerprint. A sequence of bytes from a file is compared with

another sequence of bytes which are known to belong to a malicious program. This concept is easy

to understand, and is the way anti-virus products have been working for years. The weakness of this

method is that it is ineffective against new and unknown malware. Besides, since this technique is

usually employed on the filesystem, it can easily be eluded by a rootkit trick, for example, by hooking

the filesystem driver.

10

For true effectiveness against a rootkit, Kernel memory should also be scanned for signatures (be-

sides filesystem). Since polymorphic obfuscation is rarely a rootkit concern, a Kernel memory scan can

reveal great results towards rootkit detection, no matter how advanced the rootkit is.

2.5.2 Heuristic based prevention

Also known as behavior based prevention, heuristic based prevention is becoming a popular approach

for preventing rootkits and general malware, employed in anti-virus solutions. It works by analyzing

execution paths, and determining through the heuristic, if a certain behavior is abusive. Comparing to

signature based detection, this one has much more probability for false positives, but on the other hand,

can be quite effective against new threats.

For example, to prevent injection of some kind into processes, Kaspersky Anti-Virus (Kaspersky Lab,

n.d.) hooks some functions in the system call table which must be used for general injection techniques.

Once these functions are called, Kaspersky analyzes the arguments, checks if they can lead to an un-

wanted operation, and alerts the user indicating what program is trying to be intrusive and what action

it is trying to do. Then the user may choose to allow, deny, or terminate the suspected application.

2.5.3 Integrity Check detection

Integrity checking is the most effective detection approach for malware type 1.

The main purpose of integrity checking is to verify if certain regions of filesystem and memory are

identical to a known trusted baseline. Digital signatures can make this task easier. Of course this baseline

should not be forged or easily bypassed, and this is where many integrity checkers fail. Integrity check-

ing will surely avoid some sophisticated rootkit techniques from taking place. The analyzed regions

should be all sections susceptible to subversion, which means code sections in memory (Kernel-land

and User-land memory), and files, usually system files. The best tools that use this method are Tripwire

and System Virginity Checker, which are covered in the next chapter.

2.5.4 Crossview based detection

This is a very popular rootkit detection approach employed by many anti-rootkit software. Crossview

based detection (X-View) compares a “high level” view with a “low level” view of the system. If the

“high level” view does not show the same contents as the “low level”, this means something is being

hidden, and the system was subverted. X-View can be used to detect hidden files, processes, registry

keys, network connections, etc.

11

The “high level” view of the system is obtained using the common API functions, provided by the

operating system. The “low level” view should be obtained without being affected by any rootkit trick

and this is certainly the hardest part when designing X-View. Obtaining the “low level” view depends

on what we are scanning. For instance, to implement X-View in a file system scan, a good approach for

obtaining the “low level” view would be to access the raw disk file sectors, and parsing them according

to the NTFS layout. Nevertheless, a smart rootkit would hook the function that reads the file sectors,

and provide to the anti-rootkit, again, the wrong information about the file system. This means that a

reliable X-View anti-rootkit can be very hard to implement.

2.5.5 Detecting DKOM

There is no general method for detecting DKOM attack, and since Kernel objects reside in dynamic

sections, integrity checkers do not help here. The attacked Kernel object must be studied in order to un-

derstand how we can verify the inconsistency. For example, process hiding works in the following way:

Every process has an associated structure called EPROCESS, which is a Kernel object. Windows Kernel

maintains a doubly linked list of all EPROCESS structures belonging to every process running in the

system. If a user-mode application requests a list of the running processes, a Kernel function traverses

this list and returns process information to the requesting application. It’s easy to understand that if we

remove an entry from this doubly linked list, the process will be invisible to user-land applications. But

despite the process being hidden, we want it to run, so the threads (ETHREAD structure) belonging to

our hidden process are still in the waiting dispatcher list of the NT scheduler. This means there are still

evidences we can hardly cover, because if we remove the threads from the dispatcher list our hidden

process will stop running. Based on this fact, Joanna Rutkowska created her tool called Klister. Klister

runs the list of threads in the dispatcher list, and searches for any associated process not present in the

doubly linked list of EPROCESS’s.

Figure 2.2: Illustration of a DKOM attack before and after hiding a process.

12

2.5.6 Detecting Hooks

Hooking is a very popular technique for rootkits, but it’s hard to be sure when a certain hook is legiti-

mate. Microsoft uses a feature called “hot patching” which allows the patching of system binaries even

if they are running in executable memory. This technique is particularly handy for reducing the number

of reboots required when updating system components.

Inline Hooks Inline hooks cause code modification, which is easily detected by integrity scanners. Al-

ternatively, if we find a jmp instruction in the beginning of a function, we are in the presence of

an inline hook. However, integrity scan is more reliable because an attacker can find obfuscated

techniques to execute a jump instruction not in the beginning of the hooked function but some

instructions later (for example, using NOPs).

Table Hooks In what concerns to function table redirection, these tables generally point to some place

where we can confirm it is legitimate. For example, SSDT functions always point to ntkrnlpa.exe

module. An anti-virus may use this hooking approach to implement a heuristic scanner by chang-

ing some function pointers to its own module (for instance, Kaspersky proactive defense mech-

anism redirects some system service functions to point to kl1.sys module). If these tables point

to some unknown and suspicious location, there is a strong indication that something might be

wrong.

Hardware Breakpoint Hooks Since hardware breakpoint hooks use a debugging technique, we must

first confirm that a program is not being legitimately debugged. If not, we need to read the debug

registers for every thread context within a process and check if they are properly configured to call

interrupt 1 when an address is reached (executed, read or written). Care should be taken when

accessing the thread’s context: Using a high level API call such as GetThreadContext is dangerous

because this function may also be hijacked. The perfect solution would be to access the thread’s

context directly from Kernel memory by making use of a driver.

PatchFinder 2 Technique Joanna Rutkowska created a tool called Patchfinder 2 (Rutkowska, 2004)

which uses a sophisticated detection technique based on runtime execution path profiling. This

method consists in the idea that a rootkit adds new code somewhere near a routine’s execution

path, in order to subvert it. Based on this fact, the number of instructions executed before and

after a certain routine is hooked will be significantly different (much greater in the hooked rou-

tine than in the clean one). Patchfinder 2 takes advantage of the single-step feature provided by

x86 processors, where an Interrupt Service Routine (ISR) can be specified to execute after each

instruction is consumed. The only thing this ISR does is to increment the variable that performs

the counting. Rutkowska also suggests a smart improvement for future work which consists in

analyzing the code flow instead of counting only the number of instructions. It’s important to

13

realize that this technique is prone to false positives: the number of executed instructions during

a system call may fluctuate, but have a stable peak. To reduce false positives, Patchfinder 2 creates

a histogram for calculating the peak, and watches for shifts on this peak that may indicate a hook

was installed in the meanwhile.

2.6 Anti-Rootkit Software Analysis

The following table shows the features implemented by eight anti-rootkit programs.

Table 2.1: Detection software - Comparative study

Crossview and integrity checking are two detection mechanisms that cannot tell which rootkit tech-

nique was employed. They can just tell that something is being hidden, or some part of memory is not

as it should be, respectively. For example, a rootkit may use an inline hook to intercept a function.

Crossview detection will only show the alert if the hook is hiding some information that can be com-

pared with a crossview analysis.

As we can see through this table, hardware breakpoint hook detection is not much of a concern

nowadays, nevertheless, it is as powerful as any other type of hook.

Layered filter drivers are easy to detect, but hard to determine if they are malware. In this case, a

deep crossview analysis may be helpful (if the filter driver is hiding something important such as files,

processes or network connections). Alternatively, a memory signature scan can also be helpful if the

rootkit’s signature is already known.

2.6.1 System Virginity Verifier

SVV (Rutkowska, n.d.) is an integrity checking tool created by Joanna Rutkowska for windows

2000/XP/2003 that verifies in-memory code sections along with many other read-only system com-

14

ponents which are usually altered by various stealth malware (type 1) and supports disinfection.

SVV also takes additional care with false positives, because many tools use techniques which involve

code modification, which can be considered rootkit (for instance, system monitoring tools and firewalls).

2.6.2 Tripwire

Tripwire (Tripwire, n.d.) is another integrity verification tool available for all UNIX systems, whose

purpose is to identify and alert on file changes. On the first run, tripwire scans the file system and stores

in a database, cryptographic hashes for each file. On a later date, new hashes are obtained for each file

and these are compared against the information previously stored in the database.

2.6.3 VICE

VICE (Butler, 2004) is a freeware tool written by James Butler designed to detect most types of hooks. It

works by installing a device driver which scans both User-land and Kernel-land for hooks. Supported

hooks are: Inline, IAT, SSDT and IRP. The biggest problem about VICE, as with many hooking detection

tools, is in its large number of false positives, from legitimate windows hooks.

2.6.4 Hijacking anti-rootkit software

It is not hard to implement a rootkit with the ability to bypass a known anti-rootkit system. By knowing

details of the anti-rootkit software, i.e., executable file name, description, properties or other information

about the application, a rootkit can turn off its defenses and show a clean view of the system, only to the

scanning application. Even worse, a smarter rootkit may hook certain functions or patch code sections

of the anti-rootkit software, and make it completely sterile.

To mitigate this threat, a scanning application may perform the scanning with the help of another

process through the injection of a function or a DLL. With DLL injection, it’s important to hide the

injected module because a rootkit could also scan the Process Environment Block structure (PEB) of all

processes and traverse the doubly linked list of modules in order to find the anti-rootkit module.

Trojan.Linkoptimizer is a rootkit that attacks anti-rootkits. However, this application chooses to

prevent the execution of known anti-malware programs, which will certainly alert the user that the

system may be infected.

15

2.7 Summary

All the presented detection techniques have their strengths and weaknesses, but where one fails, the

other succeeds. This chapter has shown the general techniques for Windows rootkits along with the

typical approaches for detecting them, not forgetting to reference the Linux operating system when

needed. Most of the techniques covered here have been in use for years, and when a new hiding method

becomes public, defenses against it are immediately studied and implemented in anti-rootkit software.

It is interesting to watch this as an endless game, where both players are always relatively balanced.

In fact, no one will ever win or lose. A comparative study at the end of the chapter shows the top

anti-rootkits, along with their differences.

16

3User-Land
No detection algorithm is complete of foolproof. The art of detection is just that - an art.

– Greg Hoglund and James Butler

3.1 Introduction

The previous chapter contained the explanation of three general methods used for hooking a function on

Windows. Although not being widely used on Linux rootkits, these techniques also deserve attention

since they can be used to achieve the same objectives as in Windows. The purpose of this chapter is

precisely to explore these attacks on Linux and study what can be done to detect and prevent these

threats.

By having access to the address space of a process, the execution flow can be manipulated in many

ways. The way the application sees the information and its behavior can be changed without users

consent. Since hooking is based in memory manipulation, this chapter begins by introducing three

methods that can be used to access the memory of a process. Once this is introduced, room is created to

understand how the implementations of hooking can be done.

Lets look at the following motivational scenario: An attacker penetrates a system where tripwire

is running, he is able to elevate his privileges. The attacker pretends to discover the password of the

users of that machine but he does not want to waste undetermined time trying to crack the shadows in

/etc/shadow, so he uses another approach: Access the ssh daemon address space at runtime and hook the

function auth password which authenticates the user’s password at login. When the attacker hooks this

function, he can access the arguments and steal the password. He can also verify the return value of

the function which returns zero on failure, and different from zero on success so he can avoid stealing

wrong passwords. The passwords can then be saved to a place where tripwire does not monitor such as

/tmp. The attacker just has to wait for the trojaned version of the ssh daemon to do its job and check the

file in /tmp for passwords from time to time.

The figure 3.1 does not focus any particular hook but serves to show the potential of one. In this

case, the hook is set not to hide information that reveals the presence of the attacker, but to steal infor-

mation that the attacker should not have access to. Tripwire will be quiet and will not report anything

Figure 3.1: Hooking the ssh daemon at runtime

since the disk image of the ssh daemon will be untouched.

3.2 Accessing the address space of a process

When we talk about hooking, it is implicit that there must be any means to access the process memory.

In Windows operating systems, microsoft provides a strong API for manipulation of other processes.

Lets take a look at some examples:

VirtualAlloc Allocate space on a specific process.

VirtualProtect Change the protection of a range of commited pages in the virtual address space.

WriteProcessMemory Write data to a certain region of memory in a specified process.

ReadProcessMemory The same as above, but for reading.

CreateRemoteThread Creates a thread in a specific process starting at an address. Linux does not have

a similar function.

Windows User-land rootkits take advantage of these (and other) API functions to achieve stealth-

iness (MSDN, 1999). Some proactive defense systems intercept the execution flow triggered by these

functions somewhere in the system (generally the system calls are ultimately invoked), and search for

known behavior patterns in the sequence of the calls and input arguments in order to detect abuses. In

Linux, things are different. This section shows three ways to access the address space of processes:

Using LD PRELOAD By using this environment variable, it is possible to instruct the loader to load

additional libraries before all the others that were defined at compile time. Note that this access

18

cannot be made when an application is already running because it takes place when the dynamic

loader does its job, when the process is executed. In fact, since the access is made from a shared ob-

ject, we can access the memory of the process because we actually make part of it. For the attacker,

this technique has the disadvantage of modifying an environment variable, possibly revealing an

unwanted shared library being loaded to a careful administrator.

Using ptrace system call The ptrace (ptrace Linux Man Page, 1999) system call is widely used by debug-

gers to examine and control the execution flow of an application. This can be achieved by changing

the process registers and directly reading and modifying the address space. With this function call

we can hook a function and intercept important information at any moment while the process

is running, contrary to the LD PRELOAD technique, which only works when the process is run.

This system call, in a way, is equivalent to some functions seen above in the API for windows.

Direct access to the process memory from a Kernel module On Intel x86 CPU, there is a special regis-

ter called CR3 that specifies a base address of a page table in physical memory. Each process has

its own entry in the page-table directory, so when accessing the process memory from a Kernel

module, one has to be sure that the CR3 register is pointing to the correct page-table entry. Since

the CR3 register only changes when the current process changes, this technique can be hard to

implement. Nevertheless, there are tricks that can make this easier which consist in waiting for

the target process to be the ”current”. For example, if the Kernel module is intercepting a system

call, it can check to see if the current process is the target and then access its memory.

3.3 Hooking techniques

This section presents three techniques for hooking a function in a process. The first one is inline hooking,

primarily introduced by Microsoft Detours (Corporation, n.d.), and we will see how it can be applied

in Linux. The second is PLT injection, presented by the security expert Silvio Cesare which consists in

function pointer table modification, and finally, hardware breakpoint hooking, which has the advantage

of not changing read-only memory segments nor function pointer tables.

3.3.1 Function hooking via code section modification

Under Linux, inline hooking may be the simplest way to hook a function. As described in the state of

the art chapter, inline hooking works by replacing the first bytes of a function with an unconditional

jump, forcing the instruction pointer to jump to the hijacking function.

Figure 3.2 shows the bytes before the replacement in red. The HijackFunction can control the

input and/or output data flow of the function which is being intercepted. When the Function is

19

Figure 3.2: Inline function hooking

invoked, the new bytes force the instruction pointer to jump to the HijackFunction. Inside this

function, the attacker has control over the arguments and is able to modify them. It is important not to

forget to call the Function using the trampoline, which is a function that executes the old bytes that

were replaced and then jumps to the following instruction, keeping the call to the function, consistent.

The returning value can also be modified. Note that this hook implies the modification of read-only

segments of memory, more precisely, .text sections. Before writing to memory, it is important to change

the allowable accesses of the region using the function mprotect in order to avoid a segmentation fault

for writing to non-writable position in memory. The memory segment should be made writable and

after the byte code modification, the permissions of the segment should be restored.

It is easy to understand that one way to detect this attack is by searching the beginning of all func-

tions for a jmp opcode. This method can be safe from false positives because gcc compiler never puts a

jmp in such place. In Windows, there are some anti-rootkit software that run all the functions in mem-

ory and search for a jmp opcode. This detection scheme is unreliable because the attacker may not put

the jmp opcode right at the beginning, but instead, after some useless instructions, just for the sake of

not being detected this way.

We could use nop opcodes to achieve the same result but it would ease the job of a rootkit scanner

because it wouldn’t also be stealth to put such opcodes at the beginning of hooked functions. In the

figure 3.3 the code before the jmp instruction does not do anything. The only usefullness of it is to avoid

putting the jump at the beginning, this way, deviating the attention from the rootkit detectors. A rootkit

detector that previously knows a rootkit that applies this technique, could use this code as a signature

to detect unwanted hooks.

20

Figure 3.3: Inline function hooking (variant)

Since inline hooking relies in code section modification, and because these sections are read-only,

a memory integrity check should be enough to detect that something might be wrong, as explained in

section 3.4.1.

3.3.2 PLT Injection

PLT Injection is a hooking technique by Silvio Cesare similar to windows import address table hooking

outlined in 3 (state of the art), except that this one only works for functions inside shared libraries

(besides having a different file format, of course). Hooking techniques relying on function pointer table

modification are not as accurate as inline hooking because the application may load the library itself

using library APIs.

PLT stands for Procedure Linkage Table which is a section of the elf file (ELF Specification, 1995) format

intended to redirect position-independent function calls to absolute locations. Function calls between

executables and shared objects cannot be resolved in compile time because the compiler is unable to

guess what will be every shared object function’s offset inside the process’s memory.

For every shared function, the PLT table redirects the flow to the PLT(GOT) table which does not

contain the actual function addresses when the application starts. The first call to a shared function

will jump to the dynamic linker which will resolve the real address of the function and replace it in the

PLT(GOT) table, for the subsequent calls. This method of resolving the requested symbol when it is first

referenced is called lazy loading and generally improves overall application performance, because the

dynamic linking process does not cause overhead with unused symbols.

The idea behind this method is to replace the function pointer in the .got.plt table of the elf executable

belonging to the process that contains the function to be intercepted, so that when the application in-

vokes the desired function, the instruction pointer travels to our hooking function instead of the original

one.

Despite this technique being old - almost ten years to be precise - it still can be used because the ELF

file format is unchanged. On windows, IAT hooking is widely used on many User-mode rootkits, but

21

surprisingly for Linux, I did not find any rootkits taking advantage of PLT Injection. Instead, I found

game cheats using this method to take control over the game.

Since this work does not go much deeper on this topic, I suggest reading the Silvio Cesare’s article

(Cesare, 1999) for those who are interested in the details.

3.3.3 Hardware breakpoint hooking

Once again, this topic has also been covered in the state of the art chapter 2.4.1.2, but here we will go

deep into details and study how it can be applied on Linux x86 architecture.

This hooking method relies in the manipulation of debug registers. On the x86 architecture, there

are eight debug registers available, from DR0 to DR7 which can only be modified in privilege level zero.

The modification of these registers in another privilege level causes a general protection exception. The

following table outlines the purpose of each debug register.

Table 3.1: Description of the debug registers

DR0 - DR3 The four breakpoints. These registers store the linear address of at most four break-
points.

DR4 Reserved.
DR5 Reserved.
DR6 Helps the debugger determine which of the debug conditions have occurred.
DR7 Enable or disable breakpoints (from DR0 to DR3) and specify the debug conditions.

Note that the DR6 and the DR7 register have a specific format that must be considered when as-

signed. I suggest reading the INTEL manual (Intel, 2008) to understand the flags and fields of each one.

The proof of concept of the following implementation is in the Appendix A.

First, we need a way to get inside a process address space. In my proof of concept, I used the

LD PRELOAD environment variable to ease this task. To the LD PRELOAD variable was added a

shared library which will be controlling the hook. Libraries should export initialization and cleanup

routines using the attribute ((constructor)) and attribute ((destructor)) function

attributes, respectively, so when the shared library loads, the constructor is called and here we can in-

voke the fork function, letting the main program run. This way we can get a process for us and attach

to the child using ptrace’s argument PTRACE ATTACH. It is necessary to have a separate process because

we need to control the execution flow of the target process with debugging mechanisms. To manipulate

the debug registers of the target process we can use, once again, the ptrace system call. When the Ker-

nel interrupts the execution to give processor time to another process, it saves the debug registers in the

user segment of the application’s memory. With the PTRACE PEEKUSER and PTRACE POKEUSER

ptrace arguments, it is possible to read and write these registers, respectively.

22

We are going to need a function to perform the interception, in the memory of the target process. Be-

cause we used the LD PRELOAD technique, the functions in our library object will exist in the memory

of the target process, so we can take advantage of this and create a function for this purpose.

Nevertheless, it is also possible to do this without using the LD PRELOAD variable at all and in-

jecting the interception code somewhere in free space of the target process, using ptrace’s argument

PTRACE POKEDATA. Despite being harder to implement, this one brings the advantage of hooking

the function at any time during the execution of the process.

Finaly, we need the address of the function we want to intercept. We can find it with the help of

GDB (The GNU Project Debugger, 2008) and then hard code the value in the code, or else we may use a

more elegant way and find the symbol’s address by parsing the ELF file on disk and locating the address

in the symbol table.

Right after attaching to the target process using ptrace, we set the hardware breakpoint. Setting

the breakpoint takes two steps: (1) Assign the address of the breakpoint to one of the first four debug

registers (DR0 to DR3). (2) Change DR7 register according to specification in order to enable the break-

point, so the CPU knows which registers are enabled and which debug conditions are defined - stop on

execution, in this case.

To perform this hook, another system call is required. The attacker needs to know when the process

stops due to the breakpoint, so here we need to get familiar with sys wait4 system call. Lets get into

the details of this system call by taking a look at the following functions:

pid t sys wait4(pid t pid, int *status, int options, struct rusage *rusage);
pid t wait(int *status);

The pid argument is the pid of the child that the parent process is waiting on. status is a pointer to

an integer that the Kernel fills with information revealing why the child process stopped. The options

argument defines different behaviours to the system call and the last one, the rusage, provide resource

usage information about the child. These last two arguments are not relevant for this study. The wait

function is a libc wrapper function that simplifies the call to sys wait4. The call wait(&status) is

equivalent to:

sys wait4(-1, &status, 0, NULL);

The value of the pid being -1, means that the parent is waiting for any child process to stop. Using

the following macros to analyze the status variable, we can understand the reason why the process

stopped:

WIFSTOPPED(status) - returns true if the child process stopped by delivery of a signal.

WSTOPSIG(status) - returns the number of the signal which caused the child to stop.

23

Note that there are more macros available for other purposes, take a look at the man pages (waitpid

system call, 1997) for more information. When wait returns, it’s important to verify two things to make

sure that the traced process stopped due to a hardware breakpoint: (1) status argument indicates that

the process received a SIGTRAP. (2) DR6 register of the traced process indicates that the breakpoint

occurred.

The following steps illustrate the implementation of a hardware breakpoint hook:

1. Attach ptrace to the process with PTRACE ATTACH argument.

2. Set one of the DR0 - DR3 registers to the address of the function we want to intercept.

3. Assign register DR7 according to specification, enabling the breakpoint defined in step 1 to break

on execution.

4. Continue the execution of the traced process until the wait function returns and reports that

the traced process stopped because of a SIGTRAP. At this moment, the breakpoint was reached

meaning that the instruction pointer is pointing to the beginning of the function.

5. Using ptrace (PTRACE SETREGS argument), write to the instruction pointer (EIP) register the

address of the function that will be intercepted.

6. Continue the execution of the traced process

After step 6, the instruction pointer will continue executing the code in the hijacking function, but if

we want to call the original one, we have to be careful because the breakpoint is still set. One may think

about disabling the breakpoint while executing the intercepting function, but we cannot be sure when it

is finished because it runs on a separate process. In this case, there can be used one of two alternatives:

• Use ptrace with PTRACE SINGLESTEP on every ”even” break, disabling the breakpoint before,

and enabling it after. An ”odd” break will occur when some function decides to call the target

function. The ”even” breaks will occur when the intercepting function invokes the target function.

• Change the DR register containing the breakpoint address to the address of the second instruction

of the function to be intercepted, and when a break occurs, switch the it back to the previous one

(the first instruction).

The code in the Appendix A uses the first alternative. The figure 3.4 clarifies the inner-workings of this

hook.

24

Figure 3.4: Ilustration of the Hardware Breakpoint Hooking Technique

3.4 Defenses

This section shows the implementation of two detection mechanisms each one for a specific hooking

method. The first one is designed to detect inline hooking attacks. The goal is to build a program that

scans the code sections in both memory segments and in the disk file (not only for the executable but also

for all the dynamically loaded libraries), and compare if these two versions are identical. The second

mechanism aims to detect and prevent hardware breakpoint hooking on-the-fly with the help of a Linux

Kernel module.

3.4.1 Detecting program byte code changes

Integrity checking in physical storage is well known because of tools such as Tripwire (Tripwire, n.d.).

These tools are extremely useful when it comes to rootkit detection because many malware replaces es-

sential system tools of the operating system directly in the hard disk. On the other hand, to achieve its

purpose, malware must be present in memory segments and not necessarily in disk. The disk modifi-

cation is only for a matter of persistence and also to make the installation of the rootkit simpler, but it’s

not mandatory. On Windows, today, there are several anti-rootkit applications that verify the integrity

of the memory of running applications. As said earlier, searching for a jmp opcode at the beginning of

each function is unreliable because the attacker may not put a jmp precisely at the beginning of the func-

tion. Code sections should remain unmodified until the program terminates which means that there is

another method for detecting inline hooks - and other types of memory incongruity - which is: check-

ing the integrity of process code sections. These defenses seem to be much of a concern on Windows

operating system, but not on Linux, probably because this type of attacks, regardless of being possible,

25

are rarely used. It’s important to keep in mind that in a running application, normally there are several

segments that contain code sections because the executable has is own code section, but the other shared

libraries - also known as dynamic shared objects (DSO) - also have their own.

Next follows my implementation of a memory integrity scanner for Linux. Note that the tool I

present here only scans for code sections (malware type 1, see section 2.2), which means that a rootkit

may also find ways to hide information by changing other sections in the memory segments.

This implementation can be resumed as follows: For each running process, compare the .text (code)

section present in memory with the version inside the executable on disk, do the same for each loaded

shared object within the same process. If we are testing the integrity of something, we need a trusted

baseline to compare with. Actually, we can’t say that the disk image can be ”trusted”, because the

attacker is able to change it unless there is a disk integrity checker present. So, to bring this application

to a real scenario, there should be a database with checksums of all important processes and libraries, as

tripwire does, but for this demonstration we will consider that the disk image is trusted.

3.4.1.1 Understanding memory mapping

If we want to find where a determined section of the application is inside a memory segment, it is

important to understand how the Kernel maps an executable and their respective libraries in memory.

There are three types of ELF objects (Haungs, 1998):

• Relocatable file - an object file that contains compiled code suitable for linking with other object

files to build an executable or a shared object file. These files have a ’.o’ extension.

• Executable file - Holds the program code after being linked with all its object files and is ready for

execution. Has no extension.

• Shared object file - Also known as dynamic shared objects (DSO) or dynamic libraries, these objects

can be used in two ways: (1) The linker combine this object with other shared object or relocatable

files to produce another object file. (2) The shared object is linked at runtime with the application

(and not at compile time).

When the Kernel loads the executable into memory, it has to know where to copy the executable,

which parts it needs to copy and how to organize them in memory. The same must be done for each

shared object that the executable requires to run properly. The ELF structure contains two important

tables: The program header table and the section header table.

First, lets look at the section header table. The readelf tool shows this information:

26

readelf -S /bin/cat
There are 27 section headers, starting at offset 0x6678:
Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
...
[11] .init PROGBITS 080489dc 0009dc 000030 00 AX 0 0 4
[12] .plt PROGBITS 08048a0c 000a0c 0002b0 04 AX 0 0 4
[13] .text PROGBITS 08048cc0 000cc0 0048dc 00 AX 0 0 16
[14] .fini PROGBITS 0804d59c 00559c 00001c 00 AX 0 0 4
[15] .rodata PROGBITS 0804d5c0 0055c0 000dfc 00 A 0 0 32
...

The previous example shows the section header table of the cat command. Each section contains

useful information when linking the program: program’s code, data, initialized and uninitialized vari-

ables relocation information and other. When the program is executed, the dynamic loader does not

look for this table, but instead it reads the program header table. The program header table contains

information about segments of memory which are virtually contiguous page frames that the Kernel al-

locates for the memory of the application. These segments, known as VMA (virtual memory areas),

are made of one or more sections so that the Kernel knows which sections belong to each VMA. The

following image shows the parallel between the sections and memory segments.

Figure 3.5: ELF file structure

The figure 3.5 taken from ELF specification (ELF Specification, 1995) shows on the left (Linking View)

the elf file structure as the linker sees it and on the right (Execution View), how the Kernel sees an

application and how it maps the segments in memory with the help of the program header table.

3.4.1.2 Using /proc/<pid>/maps

The /proc directory contains virtual files which provide useful system information about the running

Linux Kernel. Because the /proc is not a real file system, no storage space is consumed but only a limited

amount of memory. Nowadays, this pseudo file system is getting more attention from rootkit authors

27

and can also be subverted, not only to change the way the applications view the state of the Kernel but

also to guarantee that an unprivileged user can regain unauthorized system control. Assuming the /proc

device is clean and we can trust it, we can view the memory mapping of an executable and respective

library files by accessing the /proc/<process pid>/maps file.

cat /proc/self/maps
08048000-0804f000 r-xp 00000000 08:01 155058 /bin/cat
0804f000-08050000 rw-p 00006000 08:01 155058 /bin/cat
08050000-08071000 rw-p 08050000 00:00 0 [heap]
b7dd1000-b7dd2000 rw-p b7dd1000 00:00 0
b7dd2000-b7f1b000 r-xp 00000000 08:01 16765 /lib/tls/i686/cmov/libc-2.7.so
b7f1b000-b7f1c000 r--p 00149000 08:01 16765 /lib/tls/i686/cmov/libc-2.7.so
b7f1c000-b7f1e000 rw-p 0014a000 08:01 16765 /lib/tls/i686/cmov/libc-2.7.so
b7f1e000-b7f21000 rw-p b7f1e000 00:00 0
b7f2d000-b7f2f000 rw-p b7f2d000 00:00 0
b7f2f000-b7f30000 r-xp b7f2f000 00:00 0 [vdso]
b7f30000-b7f4a000 r-xp 00000000 08:01 293779 /lib/ld-2.7.so
b7f4a000-b7f4c000 rw-p 00019000 08:01 293779 /lib/ld-2.7.so
bfaee000-bfb03000 rw-p bffeb000 00:00 0 [stack]

Here, cat prints its own memory map. This file contains much of the information needed. We can

see the information for each segment of memory, in particular, each starting and ending addresses, their

access permissions and the path of the file from which the memory was mapped. We are able to see

where the heap and the stack are located. [vdso] stands for virtual dynamic shared object and it refers to

a virtual shared object exposed by the Kernel on all processes. Unless any application has changed it,

segments with ”r-xp” permissions are not writable and therefore should contain code sections.

3.4.1.3 Finding .text section offset in memory

Now lets take a look at the program header table. All the information we need to determine the offset

and the size of the .text section in the object file is inside the respective ELF’s section header table.

readelf -l /bin/cat
Elf file type is EXEC (Executable file)
Entry point 0x8048cc0
There are 7 program headers, starting at offset 52

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSize Flg Align
PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R-E 0x4
INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R-- 0x1
[Requesting program interpreter: /lib/ld-linux.so.2]
LOAD 0x000000 0x08048000 0x08048000 0x063c0 0x063c0 R-E 0x1000
LOAD 0x0063c0 0x0804f3c0 0x0804f3c0 0x001dc 0x00364 RW- 0x1000
DYNAMIC 0x0063d4 0x0804f3d4 0x0804f3d4 0x000d0 0x000d0 RW- 0x4

28

NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R-- 0x4
GNU STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW- 0x4

Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .hash .gnu.hash .dynsym .dynstr
.gnu.version .gnu.version r .rel.dyn .rel.plt .init .plt .text .fini
.rodata .eh frame
03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss
04 .dynamic
05 .note.ABI-tag

There are many types of segments but the one that is important here is the LOAD type. The LOAD

type means that the Kernel must read at Offset and copy all bytes to a memory segment starting at

VirtAddr until it reaches Offset + FileSiz. This is valid not only for executable objects but also

for shared libraries. The first LOAD is intended to copy all the read-only and executable memory. This

segment contains the .text section which is the one we want to find in memory. The second LOAD

segment contains all the dynamic data, and therefore, is readable and writable. For the example of

the cat command, since the Kernel is supposed to copy all the bytes since the beginning of the file

(Offset = 0x000000) until 0x063c0 (FileSiz), which is an address far beyond the ending offset of the

code section (see the section table), we can conclude that this LOAD segment contains the .text section.

Since there is only one segment that is simultaneously read-only and executable, this means that a ’r-x’

segment in the maps file will contain the code section of an object.

Now we only need to know where exactly the code section begins and ends in memory. Continuing

with the example of the cat command, if we take a look again at the maps file, the segment of memory

reserved for the cat executable which is read-only and executable, contains the code section. We can

conclude that the beginning of the text section in memory is exactly at where this segment begins, plus

the offset of the code section in the executable file. To get the ending offset we obviously just need to

sum the size of the section. In practice, the code section begins at 0x08048000 + 0xcc0 position and ends

at 0x08048000 + 0xcc0 + 0x48dc.

We know where the code sections begins and ends in the memory image and in the corresponding

file, so we are able to build our code integrity checker. The following pseudo-code outlines the memory

scan which is implemented in the Appendix B.

for each process
access /proc/<process pid>/maps
for each "r-xp" block

29

get info on the .text section for the object (in disk)
compare disk and memory image

Once again, accessing the memory of another process turns out to be easy with the help of ptrace.

By providing PTRACE PEEKTEXT as the first argument, ptrace reads a word at the location specified

by addr (third argument).

3.4.2 Detecting and preventing Hardware Breakpoint Hooking

As described earlier in this chapter, hardware breakpoint hooking relies in the use of two system calls:

sys ptrace and sys wait4. If we are trying to detect these hooks, it would be a good idea to analyze

the sequence of calls to these important system functions and understand the information flow that

passes through them. This way, maybe we could detect when some application is trying to redirect the

instruction pointer register with hardware breakpoint hooking and we could even block this attempt.

System call interception, even when used for good purposes, is seriously discouraged mostly because it

can cause problems in SMP systems. These details are discussed in the ”Results and discussion” chapter

5. But if we want to be watching the data that goes in and out of these system calls, there does not seem

to be a better choice unless we actually change the system call inside the Kernel code and recompile it,

thus, creating a new Kernel image.

3.4.2.1 Finding sys call table in Linux Kernel 2.6

Because the sys call table symbol was being targeted in most cases for malicious use, this symbol

is no longer exported in Linux Kernel 2.6, which means that we have to find a way to get it. Actually,

there is no clean way to do this.

In conversations with a friend, I was told that one could search the Kernel memory for the three

addresses of the first system calls consecutively - sys exit, sys fork and sys read - with the help of

the /proc/kallsyms device and it would point to the beginning of the table. In fact, it works but this method

turned out to be unreliable because it presupposes that the system call table is untouched. Besides that,

this technique scans the whole Kernel memory which can be slow, although this is not a big problem

since this scan is made only once.

In Phrack issue 0x3a, the article ”Linux on-the-fly Kernel patching without LKM” shows a clever,

but dirty way to get the system call table using the interrupt descriptor table (IDT). Actually, the article

goes a little further, explaining how to get the system call table from User-mode, with the help of the

/dev/kmem device, but we can easily reproduce this technique in a Linux Kernel module because in

Kernel-land, memory access has no boundaries. We are actually using a rootkit technique to perform

our defenses! It may sound weird when we think about it, but if we look at the majority of the proactive

30

defense software in Microsoft Windows for example, most of the protections are made with system

service descriptor table (the ”system call table” for Windows) hooks.

To avoid being eluded by some sort of malware, and since the system call table is always at a

fixed position during system operation, for security reasons, the module should save the address in a

configuration file.

3.4.2.2 Formulating a pattern for detection

I divided the detection in two parts, which can be understood as two states of an automaton. First, we

have to detect that a process has stopped due to a hardware breakpoint trap, and that another tracing

process is receiving that information. After this, we need to detect that do tracing process is trying to

change the instruction pointer right after this trap.

In the subsection 3.3.3, we saw that the system call sys wait4 provides a status argument. By

intercepting this system call, we have access to the information that passes through it and we can un-

derstand what the application is doing with the traced process. Again, by doing the same verification

as the attacker did to the status variable we can determine if it stopped due to a hardware breakpoint

trap even before the attacker’s application.

With the following three verifications, we can make sure that the child process has stopped due to

a hardware breakpoint:

• WIFSTOPPED(status) returns true

• WSTOPSIG(status) returns SIGTRAP, meaning that the child received a breakpoint trap

• Inspect the DR6 register of the child and test if it reveals that there was a breakpoint trap due to

one of the debug registers (DR0 - DR3)

Since we are intercepting this particular system call to catch the breakpoint traps, we have scope for

all processes. At this point, the extended instruction pointer register (EIP) of the traced process should

be saved for later use. We can say that we are in the first state of our detection algorithm, now we need

to look if the parent process tries to change the EIP value of the child. Here, we use the same method

as for the first part, but this time we intercept the ptrace system call. For the tracing process to change

the EIP register of the child, it has to do the following call to ptrace:

ptrace(PTRACE SETREGS, pid, NULL, ®s);

The ®s variable is the address of a user regs struct structure in the calling process. This

structure contains the values of all general purpose registers of the process at that instant. With this

31

call, ptrace will replace all these registers of the child process with the ones inside the structure. If

we intercept the call and compare the EIP register inside the ®s structure with the previous one

that we saved when the trap occurred, we can detect if the execution flow is being controlled with this

debugging mechanism.

At this state, we have detected the hooking attempt. I wrote ”attempt” because we can still avoid

the hook from taking place by returning -1 to the application that called ptrace from User-land.

When do we return to the state zero of this detection automaton (when no process has been

trapped)? We can assume that when the parent process orders the child to continue with the execu-

tion (PTRACE CONT as first argument of ptrace), the process will continue and if there occurs another

hardware breakpoint, our hooked sys wait4 will catch it, and transit to state one.

Figure 3.6: The three states of this hooking detection

The code of the proof of concept is in the Appendix C.

3.5 Summary

After understanding how the access to the memory of a process works, we are able to figure how the

installation of hooks can be done. Three methods of hooking in User-land are depicted in this chapter:

The first one is called inline hooking and relies in code section modification. It is widely used in Windows

rootkits and this chapter studies its applicability under Linux. The second one was presented by Silvio

Cesare and is called PLT Injection. PLT Injection is somehow similar to Windows IAT hooking (outlined

in 3), but it is slightly more complex. The last hooking technique described in this chapter is hardware

breakpoint hooking. It’s important to realize that the distinction between code sections and the other parts

of the process memory is related to the General Malware Classification section in 2.2.

The second half of the chapter focuses on the defenses where two detection methods are presented

The strengths and weaknesses of these two methods are discussed later in the chapter ”Results and

discussion” at 5.

32

4Kernel-Land

A hidden process is particularly threatening because it represents code running on your system that you are

completely unaware of.

– Greg Hoglund and James Butler

4.1 Introduction

The last chapter focused on user mode rootkit attacks. Once we are aware of the details of the attack,

most of the user mode techniques are relatively easy to defeat since they can be better controlled from

Kernel-mode.

If the intruder gets into Kernel-mode, challenges are higher for those who seek defenses and it gets

harder to ensure that the system has not been compromised. There is no doubt that a good integrity

checker for the physical memory is extremely effective against rootkits that replace simple system util-

ities such as ls or netstat. But when the attack is performed at Kernel-mode, integrity scanning must

be made at another level, concerning dynamic and non-dynamic Kernel memory. For example the ls

command, which returns the list of the contents of a directory, delivers control to Kernel invoking the

sys getdents. The rootkit can modify this system call in order to hide files or even processes (of the

directory listed is /proc). Kernel rootkits are installed directly into Kernel memory area modifying im-

portant Kernel structures, function pointer tables, or patching the Kernel code, in order to filter the data

that the attacker pretends to conceal from the administrator.

The current chapter covers the attack vectors used nowadays for intercepting system calls and other

subverting approaches. Also describes the implementation of two applications intended to detect the

threats.

4.2 Attacking the Kernel

This section explains several methods that can be used to intercept the execution flow of a system call.

The figure 4.1 shows the path of an invocation to a system call from the moment that a User-land appli-

cation calls, until it reaches the depths of the Kernel. The system call in the figure is sys getdents (get

directory entries), and by taking a first glance at the image we can see that there are many places where

the interception can be installed in order to provide what the attacker wants: Control of the call.

Figure 4.1: Linux Kernel Attacks - The Big Picture

Next follows the explanation of each technique that can be used to redirect the system call table.

4.2.1 Simple system call redirection

Once the system call table is found, an entry in the table can be replaced with the address of another

function. Before Kernel Version 2.6, when the sys call table variable was exported, almost every

rootkit used this method to hide its presence.

saved syscall = sys call table[SYSCALL NUMBER];
sys call table[SYSCALL NUMBER] = new syscall;

Today, Kernel developers hardened this task because the table is not directly available to the Kernel

module, so the only challenge is to find where it is in Kernel memory. After that, it is a matter of pointer

replacement. This is the most simple way of hooking a system call, and also the easiest method to detect.

Nevertheless, today, rootkits tend to use other methods.

4.2.2 Inline hooking Kernel functions

Kernel inline hooking works in the same way as the inline hooking technique presented in 3.3.1, but

this time, we are applying it at Kernel-land. This method can be used not only for system calls but

also for any other Kernel function that the attacker might find useful to intercept. The first bytes of the

function are replaced with an unconditional jump instruction forcing the program counter to branch

to a new function. The new function should call the original function with the help of a trampoline,

34

and if needed, providing modified arguments. Return value can be changed as well. By doing this, the

attacker is modifying the Kernel code directly into memory and leaving traces which are handy for an

anti-rootkit. Here, the way a detector should work is similar to the one presented for the same hooking

technique at user land in chapter 3: The Kernel memory should be verified for integrity with a trusted

baseline.

4.2.3 Hooking interrupt 0x80 / Sysenter instruction

First, it is important to understand the role of the interrupt descriptor table (IDT). This table is a data

structure designed to implement an interrupt vector table in the x86 architecture. There are 256 in-

terrupts supported which can be triggered with one of three types of interrupts: Software interrupts,

hardware interrupts and processor exceptions. The first 32 entries are reserved for processor exceptions,

and any 16 of the remaining entries can be used for hardware interrupts. The rest are available for

software interrupts.

Each entry in this table holds, between other security related information, the address of the in-

terrupt handler (or Interrupt Service Routine - ISR) that processes the interruption. When an interrupt

is triggered, the processor multiplies the interrupt number by the length of each entry in the table (8

bytes), and then adds the offset of the beginning of the table, finding the correct address of the interrupt

handler. (The i386 Interrupt Descriptor Table, 2007)

The interrupt number 0x80 is a software interrupt designed to dispatch the intended system call to

be executed for the User-mode application, this way, calling the system call function in Kernel code.

The system call function inspects the contents of the eax register and invokes the respective system

call routine indexed by the eax value (the number of the system call) in the system call table.

The location of the IDT is maintained by a 48 bits special register named IDTR which can be stored

and loaded using the sidt (store interrupt descriptor table) and lidt (load interrupt descriptor table)

instructions, respectively. An attacker can replace the interrupt service routine pointer for interrupt 0x80

(in the table) with another interrupt handler that fits the needs of the attacker, hiding information for

certain system calls. A rootkit can also make a copy of the table and change the ”official” base address of

the IDT, to point to a new table, by modifying the IDTR register. This can be stealth because the attacker

can hide modifications made to the interrupt table if the anti-rootkit scanner scans only for modifications

of the original table. Another alternative is to patch the system call function, which is located in the

Kernel code, via inline hooking.

Although, newer platforms such as Windows XP, 2003, vista and recent versions of Linux Ker-

nel 2.6 use another method to call the system services. The occurrence of an interruption causes the

CPU to load one interrupt gate and one segment descriptor from memory to know what interrupt han-

35

dler to call. This incurs in a considerable overhead that is aggravated with high frequency of system

service calls made by user mode applications. Because of performance reasons, INTEL and AMD si-

multaneously and independently developed their versions of a fast system call in alternative to the

interrupt 0x80 mechanism. INTEL came up with the SYSENTER instruction (Garg, 2006) and AMD with

SYSCALL. Both are very similar in what concerns to its functionality, but in this work I will focus on the

SYSENTER fast system call. When the SYSENTER instruction is invoked, processor passes control to the

”IA32 SYSENTER EIP” which is a register in one of the Model-Specific Registers (MSRs). In Linux Ker-

nel, IA32 SYSENTER EIP contains the address of the function sysenter entry, which will process

the system call as explained earlier in this subsection.

If we want to control the execution flow triggered by the SYSENTER instruction, we need to ma-

nipulate the IA32 SYSENTER EIP register, but, since this register is privileged, we are only able to read

and write to it from Ring Zero, using the rdmsr and wrmsr instructions.

The following assembly code ilustrates how this hook can be installed:

movl $0x176, ecx //location of the IA32 SYSENTER EIP register
rdmsr //read register value
movl eax, orig sysenter //store in orig sysenter
movl new sysenter, eax //store into eax register the new SYSENTER routine
wrmsr //save it to IA32 SYSENTER EIP

After the execution of this code, if SYSENTER was not already hijacked, orig sysenter should be

pointing to sysenter entry Kernel function. It is important not to forget to restore the register when

unloading the rootkit or the system will crash because every system call uses the SYSENTER instruction

and it is pointing to an invalid address. When inside the new sysenter function, one is able to check

and modify the arguments in the stack which have all the information about the invoked system call

from User-land. After the payload, the new sysenter function must jump to the orig sysenter,

this way, keeping the original system behaviour. Yet, I never saw a Linux rootkit using this technique.

Detecting a SYSENTER hook is extremely easy: Just read the value of IA32 SYSENTER EIP and

check if it has the address of sysenter entry function. If not, some malware should be controlling

the execution flow.

4.2.4 Runtime Kernel patching

Runtime Kernel patching is similar to inline hooking in the sense that it is based in Kernel memory mod-

ification. In 1998, Silvio Cesare presented several methods (Cesare, 1998) for extracting and modifying

sensitive information from the Kernel through the /dev/kmem device. Three years later, in 2001, sd and

devik published an article in the phrack magazine showing how to subvert the Kernel into using another

system call table (sd & devik, 2001), instead of the original one.

36

As explained in the second chapter, nowadays, this is not much of a concern because the /dev/kmem

device is read-only in the recent versions of the Kernel. However, if the Linux Kernel is compiled with

LKM support, it is still possible to use the same method to force the Kernel to use another system call

table created by the rootkit, possibly eluding a weak anti-rootkit if it only searches for modifications in

the original table.

Because Kernel no longer exports the sys call table symbol, this method seems to be the best

way to find its address. The system call function takes the system call number and uses it to index

into the sys call table vector to find the specific system call needed by the user land application.

Somewhere after the beginning of that function, resides the call to the actual table. We are going to

search for the following code:

call *sys call table(,%eax,4)

Which correspond to bytes "ff 14 85 XX XX XX XX" where XX bytes belong to the actual

sys call table address, the one we are searching. The following steps resume the technique:

1. Find IDT base address with sidt instruction.

2. Seek to the entry corresponding to int 0x80 in the table.

3. Get the interrupt handler address of system call from the table entry.

4. Search for the three consecutive bytes: ff 14 85.

Now, the attacker can change the four bytes after the pattern, placing the address of a new system

call table, which he can happily modify. Since this method relies in byte code searching, it is not guar-

anteed that will work between Kernel versions, but I have tested it with many Linux 2.6 Kernels and it

seems to be quite portable. Probably because it’s unlikely that the system call mechanics are changed.

4.3 Detecting the attacks

Rootkits can be hard to detect, especially when they operate in Kernel-land because at this level they

are able to alter functions used by all running applications, including anti-rootkit software. The current

section describes what actions can be taken in order to protect the Kernel from the attacks shown in the

previous section.

4.3.1 Kernel Integrity Checking

Generally, integrity checkers are more concerned about finding suspicious activities by searching in the

physical storage. Physical storage is, indeed, important to analyze and in an infected system it may

37

contain evidences of an intrusion, however, malware only needs to survive in memory. If the attacker

concerns enough about steathiness, he should avoid the file system altogether. This means that the

consistency of the running Kernel memory also should receive attention and this is what this subsection

is all about.

Fingerprinting sensitive places

Fingerprinting works like a Kernel memory ”photograph” of sensitive places, taken at the time that

the system was clean. Later in time, the administrator can compare the current Kernel memory image

with the fingerprint taken previously, and check for system modifications.

This method can lead to false positives if the administrator does not make a fingerprint after every

relevant system change. Note that Kernel fingerprint detection is only sensitive to system changes,

which means that if the fingerprint is taken when a rootkit is active, it will not detect any system change

(unless the rootkit is removed, of course). The fingerprint should be saved in a safe place - preferably

encrypted and/or signed - where the administrator is sure that the attacker cannot reach, in order to

prevent him from taking another fingerprint of the subverted Kernel and replace the original one.

A good fingerprint should be based in the following: System call table, Interrupt Descriptor Table,

IA32 SYSENTER EIP address, IDTR register, Kernel Symbols (first bytes of the functions) and other

important function pointers such as the /proc virtual file system lookup function (which will detect the

adore-ng rootkit, for example).

Zeppoo anti-rootkit (Evron, 2006) implements this detection method pretty well.

Verifying the integrity of important dynamic regions in Kernel memory

In what concerns to dynamic Kernel memory, this is somehow similar to fingerprinting but with

the difference that the last one blindly saves the information without checking its validity.

Here, a good anti-rootkit should inspect the correctness of all regions where important information

is stored in the system, in other words, looking for kooks. These are the type of integrity checks that

are used in the next subsection with the ”Proactive Detection Approach”. Continue reading for deeper

details.

4.3.2 A Proactive Detection Approach

In this subsection, I present a proactive detection approach based in the analysis of certain parts of

the Kernel before the invocation of a system call. Note that this is different from a Proactive Defense

system - as the Kaspersky Anti-Rootkit Software for Windows - because this method does not prevent

38

the malware from being installed, but it detects that it is in Kernel memory. The code of the proof of

concept is in the Appendix D.

Because the system call table is usually targeted by rootkits and depending on each system call

that is being called, the malware may be subverting different parts of the Kernel, it should be a good

idea to check specific locations of the system for consistency, when each system call is invoked. Being

able of executing code after a User-land request to the Kernel and before the execution of a system call,

gives us the possibility to scan certain parts of the system when it is more convenient, hence the word

”proactive”.

The basic idea behind this method is to clone the system call table, and replace every function

pointer to point to stub functions, where some verifications to the system can be performed. When the

checks are done, the actual function call is invoked with the help of the cloned table, which is still the

same as the original table before the installation of the defense system.

The figure 4.2 illustrates the implementation of this defense system.

Figure 4.2: Kernel Proactive Detection System

By looking at the figure 4.2, the following pertinent question might outcome: ”Why not redirect

every entry in the system call table to the same Inspection Stub?”. The reason for this relies in the fact

that with a unique Inspection Stub, we would only have one way to identify the destination system call -

reading the value of EAX register - which is completely unreliable if a rootkit intercepts the system call

and changes it.

Since system calls are invoked so many times during system operation, it is important to reduce -

as much as possible - the overhead created by the checks of this detection system. Relevant checks to be

made in the ”System Inspection Routine” are described:

Check the system call table entry When a certain system call is invoked, we can check if the corre-

sponding entry in the original system call table is correct, meaning that it should contain the ad-

dress of the respective Inspection Stub.

39

Check Call Stack Note that when the Inspection Stub is executed, the call stack should contain always

the same functions. This leaves us with a method for detecting another possible incongruity:

Check if the call stack is something similar to the following:

[<e0a8b2cd>] Inspection Stub+0xd/0x20 [Inside module code]
[<c01040f2>] sysenter past esp+0x6b/0xa9 [Inside Kernel code]

If the call stack shows more than these two functions, probably there is rootkit code being executed.

Nevertheless, for performance reasons, the default Kernel configuration comes without frame

pointers which means that we won’t be able to have good stack traces having the EBP register

as a general purpose register. Selecting the ”Compile the Kernel with frame pointers” option (if

present) in the Kernel configuration menu, sets the CONFIG FRAME POINTER flag enabling the

EBP register as the frame pointer. Actually, the frame pointer has no other use unless to provide

a correct stack trace, so developers decided to remove the use of it in order to have a smaller and

slightly faster Linux Kernel image for default instalations.

So, for this check to work, one has to enable this option before compiling the Kernel.

Check first bytes of the system call function and the system call table dispatcher function Here, one

of three alternatives can be taken: (1) Check for an unconditional jump at the beginning of each

function to detect a possible inline hook. (2) Test the integrity of the first bytes with a trusted

database. This database should have previously gathered this information. (3) Check if the first

bytes are unchanged with the help of the vmlinux file

Check IA32 SYSENTER EIP If the system uses the SYSENTER fast call, it is important to check if

the IA32 SYSENTER EIP register has the address of the correct Kernel function, which is sysen-

ter past eip.

Check ”int 0x80” In case the system is using the old method (with the Interrupt Descriptor Table),

test if entry 0x80 in the IDT has the address of the correct interrupt service routine, which is the

system call function.

Check for patched Kernel code As stated above in 4.2.4, we can check if the correct system call table is

being used by inspecting the byte codes in the system call function.

Check Virtual file system If the system call is related to disk input/output, the defense system may

check some relevant function pointers of the virtual file system (Brown, 1999).

When a check in this system detects that something is wrong, it cannot stop the system call from

being executed because it will get the system unstable. Instead, it should alert the administrator and

give as much details as possible so he or her can understand what is wrong and where.

40

With this proactive detection system running, we can defend the system against most of the attacks

stated in section 4.2.

Table 4.1: Correspondence between each system check and Kernel attack

Check to perform Attack to detect
System Call Table Pointers Simple Redirection
Verify CallStack IDT/Sysenter/Simple Redirection
Byte Code Inline Hooking
Sysenter Sysenter Hook
int 0x80 IDT Hook
Patched Code Runtime Patching
VFS Other Lower level hooks

The table 4.1 relates each check described above with the respective attack that it intends to detect.

4.4 Summary

Several ways of attacking the Linux Kernel were explained in this chapter concerning the system call

invocation mechanism. Almost every hiding technique ends up redundantly in hooking, this is why

the term is having so much prominence in this thesis. Also, most of the communications between User-

mode and the Kernel-mode are exchanged with the help of the system call table, resulting in a common

attack vector for the attackers. The second half of this chapter covered different ways of detecting these

attacks, having them concentrated into an IDS which was built under the scope of this work.

41

42

5Results and discussion

More-advanced rootkit techniques and their detection are being developed as you read these words.

– Greg Hoglund and James Butler

5.1 Introduction

We need to retrieve the profits of this study with an analysis for each new attack and defense technique

presented in this thesis. Generally speaking, each analysis has the goal of understanding the benefits and

the drawbacks of each method. In most cases, these methods won’t have problems with false negatives

because they are designed to detect specific attacks of rootkits. On the other hand, false positives can

be a disadvantage since there can be system changes because of the installation of specific software or

system upgrades.

5.2 Process code integrity scanner

Section 3.4.1 described the implementation of an application memory integrity scanner, specifically for

code sections. The tool is a simple application which scans the memory of all running processes on

the system and compares the code sections in memory with the versions in the ELF executable and

in the shared objects. I designed it to prove that the idea I had was effective against inline hooking

and other code modification attacks. This subsection intends to analyze the execution performance and

disadvantages of this detection technique.

5.2.1 Execution

Unlike other intrusive detection tools which are installed on the system, this one is different: It only

checks the system when executed and takes about two to three minutes to complete, depending on the

factors such as processor, disk access and memory bus speed. Next follows a snippet of the execution of

the tool, detecting byte modification in a process.

(...)
[05:04:50] Scanning pid 5435... OK

[05:04:51] Scanning pid 5438... OK
[05:04:52] Scanning pid 5683... OK
[05:04:54] Scanning pid 5736... OK
[05:04:56] Scanning pid 5738... OK
[05:04:56] Scanning pid 5758... OK
[05:04:58] Scanning pid 5765... OK
[05:04:58] Scanning pid 5977...
WARNING - Offset: 0x08048484: 0x83e58955 (DISK) != 0xe9aaaaaa (MEM)!
WARNING - Offset: 0x08048488: 0x04c708ec (DISK) != 0x04c708aa (MEM)!
Object ‘‘/home/andre/thesis/inline/inline’’ modified in memory!
Failed

The previous example detected a simple inline hook in a running process. Both bytes in disk and

memory are reported as also the position where the modification occurred so that the administrator can

check which function was changed (if there is enough debugging information about the process).

Clearly, the way the detection tool is used is not the most handful. An administrator would prefer

the tool to be proactive, meaning that it scans the memory, periodically, when more convenient and

without blindly wasting system resources.

5.2.2 Problems

Not all processes can be scanned: Init (PID 1) simply cannot be attached to ptrace. Processes that are al-

ready being debugged also cannot be attached. This can lead to a defense mechanism from the attackers

point of view, because a simple attach to ptrace can leave the process immune to scans.

Scanning .text sections might not be enough. It is possible that there are other read-only sections

sensitive to other attacks beyond code sections that should be scanned for integrity.

Also, there could be legitimate applications changing their own code sections at runtime leading to

false positives. Fortunately, this is uncommon. The only way to minimize false positives is to provide

a built in exclusion option in the tool to ignore certain offsets of specific applications causing the false

positives.

The use of the ptrace system call causes an overhead that would not occur if the scanning was made

through a Linux Kernel Module. Unlike this tool which runs at User-level, at Kernel-level memory can

be accessed directly without suffering from the slowdown caused by the interrupt 0x80 or the sysenter

instruction. Note that CR3 register must be correctly assigned in order to access the address space of the

process to be scanned, as described in 3.2.

44

5.2.3 Other approaches

A more interesting approach would be to hook the sys execve and the sys fork system calls, which are the

only way to bring a new process to memory, and inspect every application when loaded. After the first

inspection, periodic checks should be also performed from time to time.

All the information about the permissions of the sections of the loaded process image are in the

program header table, in the ELF file. The tool could use this information to find where these sections

are located so that it can check the integrity.

5.3 Hardware breakpoint hooking attack

The technique is described in 3.3.3. Here we will see an example of the attack in action, and discuss the

traces it leaves to a forensic analysis.

5.3.1 Execution

The following simple C application was used to illustrate the execution of this attack:

//function to be intercepted
int simple(int value){
printf("Simple: argument! %d\n", value);
return 5;

}

int main(){
printf("Simple() returned: %d\n", simple(10));
printf("Running simple again:\n");
printf("Simple() returned: %d\n", simple(11));
return 0;

}

Function simple() will be fully hijacked, meaning that its parameters and return value are modified.

The following function code is the function that will be jumped to, when the breakpoint occurs in the

attacker’s process. In other words: EIP register is changed to address of hijack simple.

//prototype of the function to be intercepted
typedef int (*simple func t) (int);
simple func t simple func;

//hijacking function
int hijack simple(int value) {

int new value = 31338;

45

simple func = (simple func t)HIJACK ADDR;
simple func(new value); //call the original
return 31337;

}

Normal execution of the application

PID: 7239 wait 2 seconds...
Simple: argument! 10
Simple() returned: 5
Running simple again:
Simple: argument! 11
Simple() returned: 5

Execution of the application with hardware breakpoint hooking

PID: 7239 wait 2 seconds...
Simple: argument! 31338
Simple() returned: 31337
Running simple again:
Simple: argument! 31338
Simple() returned: 31337

5.3.2 Analysis of stealth

Unlike to inline hooking or PLT injection (see 3.3), the code sections and other function pointer tables in

the process remain untouched. On the other hand, debug registers are modified, which is one of the

evidences left by this technique. Nevertheless, the fact that a process got its debug registers modified

does not mean that it is being attacked because it can be under a debug operation using hardware

breakpoints. Also, there must be another process to perform the control of the hook itself (to modify the

debug registers, wait for the process to stop at the breakpoint address and change the EIP value), which

is yet another clue that something might be wrong with the system.

Note that the method presented here uses the ptrace system call but it is also possible to implement

it at Kernel level through the help of an LKM, which is much more complex but stealthier.

5.4 Preventing hardware breakpoint hooking

The current approach to hardware breakpoint prevention is able to stop a hook attempt from taking

place by making the attacker’s code sterile and without harming the target application. This section

46

uses the example given in the previous section to show the effectiveness of this approach.

5.4.1 Execution

Execution of the application with hardware breakpoint hooking enabled and the prevention system

active

PID: 5165 wait 2 seconds...
PTRACE SETREGS: Operation not permitted
Simple: argument! 10
Simple() returned: 5
Running simple again:
Simple: argument! 11
Simple() returned: 5

The PTRACE SETREGS error is printed to stderr from the process controlling the hook and reveals

that it could not set the EIP register on the target process because the system call was blocked by the pre-

vention system. As a result, we can see that this prevention method avoids any change in the execution

flow if this attack is attempted.

Since the Kernel module uses the printk function to log its activity, the following line is logged to

/var/log/messages which can be fetched with the dmesg command:

WARNING: PID: 5173 - HARDWARE BREAKPOINT HOOK ATTEMPT on process 5174!

Both attacker’s process and target process are identified and debug registers used to perform the

attack are restored as soon as the LKM detects the hook attempt.

5.4.2 Problems

The refered prevention method is only effective if the attack is performed using sys ptrace and the

sys wait4 (or one of its derivatives), which is what will be probably used if it is made from User-

land. This defense can also work if a dumb rootkit uses these system calls from kernel land, which is

not so unlikely to happen as seen by the poorly written malware nowadays. At Kernel-land, the attack

is harder to control because the intruder has the same privileges as the defense system and a smarter

approach to this hook will certainly not use the above system calls, thus, bypassing this defense.

The pattern behavior used in this prevention system is unlikely to cause false positives because it’s a

very specific automaton that should not occur in legitimate applications. The detection only takes place

when the instruction pointer is modified after the breakpoint trap, which means that there must already

be some execution flow manipulation. In what concerns to the use of hooking for good purposes: for

example, if an application uses a hooking method to avoid having to restart after an update, that method

47

will not be hardware breakpoint hooking because it is slower (cost of an interruption) and consumes

resources that a software hooking technique won’t need.

5.5 Kernel Proactive Detection Approach

In the same manner as the hardware breakpoint defense tool in the previous section, this implementa-

tion is also a Linux Kernel module that logs information to /var/log/messages. On the other hand, this

system does not prevent the malicious activity from reaching its goals, leaving just an alert to the ad-

ministrator. Analysis of the accuracy, performance and drawbacks of this implementation are dissected

in this section.

5.5.1 Execution

Next follows a snippet of the logged file containing the output information printed by the detection tool

when loaded into Kernel.

SCT Defender Loaded!...
Interrupt 80 OK
Sysenter instruction OK
SCT Defender: sys call table at c0308500
SCT Defender: verifying sys call table integrity...
Done.
System call jump OK
SCT Defender: Active.

When the module is loaded, the following checks are performed before the installation of the de-

fense system:

• Check Interrupt Service Routine 80 address in the interrupt descriptor table.

• Check sysenter instruction for hooks.

• Check the whole system call table.

• Check for inline hooks on every system call table.

• Check the system call jump in the system call function in Kernel code.

Due to the extreme speed of these verifications, it is acceptable to perform them when the module

is loaded because it does not incur in a significant overhead. The same is not so true when the IDS is

installed and running.

48

Let’s see the scenario of a system call table entry redirection. Figure 5.1 illustrates the attack of

the sys getuid32 system call hook along with this IDS installed. To ease the understanding, rootkit

information is displayed in gray color.

Figure 5.1: Detecting system call redirection attack

Two checks will detect this system change as soon as the system call is invoked by any User-land

application: (1) The entry in the system table has now the address of the attackers’s function (the one that

hooks the system call). (2) The call stack is modified, showing again, that same function. The following

warning lines are printed to /var/log/messages.

WARNING! Syscall 201 hijacked!
WARNING! 0xe0a750a8 should be inside kernel code!
WARNING! Call stack too big, something is wrong!

The first line is the check (1) alerting that the system call entry number 201 was modified. The

remaining two lines are related to the call stack check. Let’s see how the stack looks like at this time:

[<e0a858bd>] syscall stub201+0xd/0x20 [sctdefender]
[<e0a750a8>] hijack getuid32+0x18/0x20 [rootkit]
[<c01040f2>] sysenter past esp+0x6b/0xa9

The line in red reveals the presence of a function being invoked before the syscall stub201

(which belongs to the IDS). The defense system alerts because the second function in the call stack

should be sysenter past esp (pointing to the Kernel code section). Also, the call stack has three

functions of size instead of two.

For a careful attacker, the last check can be avoided: In the hijack getuid32 routine, instead of

invoking the system call directly, one can jmp to it after restoring the stack as it was, before the execution

flow reaches the hijack getuid32 function.

49

5.5.2 Performance Tests

Each system check, along with the redirection of the system call itself contributes to an overall delay of

the total time that the system call takes. The present subsection studies the total overhead produced by

the proposed defense system. Table 5.1 illustrates the estimated overhead in percentage relatively to the

original system call time.

Table 5.1: Performance tests

Average time (ms) Percentage
Total system call time (no IDS) 520 0,0

No checks 535 2,8
All checks 1126 116,5

SCT 558 7,3
Call Stack 619 19,0

Sysenter 804 54,6
int 80 606 16,5

system call jmp code 578 11,2
Syscall Inline check 565 3,6

All checks except sysenter 752 44,6

It is crucial to analyze each check to understand which are consuming more time. The results in

the previous table were grabbed from the following test conditions: Measure the time taken during five

million invocations to the system call sys time. The “Average time (ms)” column is the average time

taken in twenty of these tests. “Percentage” column helps to understand the overhead produced by

these checks towards a system with no IDS installed. The tests were performed in an Intel Pentium M

760 Processor (2MB L2 Cache, 2.0 Ghz) with 1.3GB of RAM.

We can clearly see that the sysenter check is consuming considerable time. The reason for this is

in the rdmsr instruction. Because the remaining verifications are based on simple byte comparison in

memory (except for the call stack check which is slightly slower), they are faster and do not represent a

significant overhead in a system call.

We can minimize this overhead by taking the following into consideration: Unlike the sysenter

and int 0x80 checks, the remaining verifications are unique for each system call, which means that

we can execute the first ones with less frequency, for instance, after each ten system calls.

5.5.3 Problems

If this mechanism is implemented as described in chapter 4, there is one easy way around it. Imagine the

following attack: The attacker hooks a function in the system call table. When a User-land application

invokes the system call, the rootkit code gets executed and runs the original system call. But instead of

50

using the address in the system call table before the hook, it finds the right address of the system call by

searching the kernel, using the /proc/kallsyms device of simply searching in the System.map file.

In this case, the System Inspection Routine won’t get called and no checks to the kernel will

be made. To solve this problem, there should be periodic calls to this routine, each one intended to scan

a different system call. However, this solution has the disadvantage of not being entirely “proactive

detection”, but also “passive detection” because it performs periodic scans on self-demand.

On SMP systems this implementation may cause problems. For start, there is an IDT for each

processor, which is not being taken into consideration on this implementation. Also, the moment when

the whole system call table is cloned and then fully replaced can cause race conditioning problems with

multiple processors; This is why system call redirection is strongly discouraged by Kernel developers.

Finally, for the call stack check to work the CONFIG FRAME POINTER flag must be enabled when

the Kernel is compiled (which is not by default). Revisit 4.3.2 to understand the use of this flag.

5.6 Summary

The present chapter analyzed every implementation of this thesis measuring the advantages and dis-

advantages from the defender’s point of view. It begins showing that the code integrity scanner is

effective for any attack involving code modification in the memory of a process. Also, the results of

implementations concerning hardware breakpoint methods were analyzed, illustrating the attack itself

(in User-mode) and the respective prevention system. Finally, despite some issues, the Kernel defense

mechanism presented in chapter 4 was tested and proven to be reliable not only in terms of performance

but also in effectiveness. Though, it is not infallible.

As we could see, we cannot say that these detection methods are foolproof.

51

52

6Conclusions

The fact that a product claims to provide some level of protection does not necessarily mean it actually does.

– Greg Hoglund and James Butler

In chapter 3, I provided information about Linux hooking techniques focused on user land hooks,

but in the case of the hardware breakpoint hooking detection, with some defenses from Kernel-land.

User-land hooks are relatively easy to detect and prevent, but the same is not so true for Kernel-land

hooking. The Intel x86 debugging mechanism is powerful and can be used and abused for stealth

purposes. As we could realize, hooking is a sophisticated technology for execution flow control that is

used not only by malware but also by many anti-virus applications and host-based intrusion detection

and prevention systems.

Detection techniques do not prevent the system from being attacked in the first place. Generally,

they only indicate what is wrong with the system and where is the incongruity. Some of them only

alert when the detection tool is executed (because of a scheduled scan or on administrator’s demand).

The approach presented in chapter 4 is permanently running in background as a Linux Kernel module,

and logs suspicious system changes when detected. Although, it still does not prevent the attacks from

taking place because the invocations to the system calls cannot be stopped. If they are, the system will

be left in an inconsistent state. Generally, the smartest thing to do when the administrator receives the

alert of an intrusion, is to reinstall the entire system. The administrator can trust his or her personal

anti-rootkit tools for removing the threat, but can never be sure that the system is clean simply because

rootkits are a constantly growing threat. There are always new and different ways of hiding resources

in the system and some of them have never been disclosed to the public.

The results obtained ensure that the goals initially outlined in the first chapter were reached for the

studied hiding techniques. Although, we are far from stating that the work is done. In fact, a good

researcher may say that it will never be done: The reason concerns the constant evolution of rootkits.

Tests performed with the IDS’s against rootkits implementing the respective hiding technologies had

successful results, and helped to understand failures in the solution that attackers could exploit.

It’s interesting to watch the evolution of rootkits through the time: At the beginning, a rootkit was

no more than a set of tools, designed to replace certain system utilities. Nowadays, most rootkits come

in the form of a driver that enters Kernel and subverts some part of it. In the future, rootkits may

find new stealthy places, attacking not the operating system, but the hardware such as the processor’s

microcode, or other microchips in the computer. There is already a hardware based anti-rootkit card

called “Copilot”, which is a PCI card. This card is plugged on the host machine and has its own CPU.

The idea is to work independently from the potentially infected operating system, and scan physical

memory through DMA for signs of a rootkit via Kernel memory integrity checks and techniques to

detect Kernel hooks.

We can conclude that this is like the cat-and-mouse game: At some instant, rootkit authors may be

winning, but then anti-rootkit security specialists strike back, and the cycle repeats itself. This is some-

how similar to online game cheating: cheaters bypass the game protections, and then anti-cheat software

updates, and catches cheaters. This competition ends up being healthy for technology advancements

since this brings motivation to the security scenario.

Finally, despite of these methods not being foolproof, this does not mean that they don’t reserve

attention from security specialists. Let’s consider the analogy of a bank: Guards don’t just lock the

doors; there are motion sensors, cameras and other surveillance systems that do not guarantee total

security but it is another valuable step towards a perfectly safe system.

6.1 Future Work

In some aspects, this research is incomplete not only because of the subject’s obscurity - making it hard

study - but also because there is always new information on the topic coming out. Next follows a list of

extensions to the implementations and new research vectors on this thesis.

• Improve the User-land memory scanner in order to scan all read-only segments and not only

code sections of applications. Also there should be possible to exclude certain process regions, to

mitigate false positives.

• Research the defenses against stronger implementations of the hardware breakpoint attack such

as in Kernel-land. A good starting point would be the phrack paper (halfdead, 2008).

• Create a more secure and sophisticated alert mechanism for the proactive detection system. The

current implementation only logs the alerts to /var/log/messages through the printk routine.

• For performance reasons, slower checks in the proactive detection system, such as the SYSENTER,

should have lower checking rates, ie, the check should only take place at each X invocations to a

system call. The X value should be configurable.

• To mitigate the problem described in 5.5.3, periodic scans should be performed in the proactive

detection system (with a configurable time interval).

54

• In the proactive detection system: Create specific checks for each system call. The 4.3.2 subsection

suggests the VFS layer check when a sys getdents system call is triggered. Besides this one, other

verifications could be implemented, this way, improving the overall trustworthiness of the anti-

rootkit software.

• Study direct attacks to the IDS - Analyze possible attack vectors directly to the defense system and

ways to prevent them.

55

56

Bibliography

Brown, N. (1999). The linux virtual file-system layer. (http://cgi.cse.unsw.edu.au/˜neilb/oss/

linux-commentary/vfs.html (visited on 2008/09/29))

Butler, J. (2004). Vice - catch the hookers! (http://www.blackhat.com/presentations/bh-usa-04/

bh-us-04-butler/bh-us-04-butler.pdf (visited on 2008/02/10))

Cesare, S. (1998). Runtime kernel kmem patching. (http://vx.netlux.org/lib/vsc07.html (visited

on 2008/09/29))

Cesare, S. (1999). Plt injection. (http://vx.netlux.org/lib/vsc06.html (visited on 2008/08/04))

Clandestiny. (n.d.). A filter driver example using a kernel key logger key logger. (http://www.rootkit.

com/newsread.php?newsid=187 (visited on 2008/01/11))

Corporation, M. (n.d.). Detours. (http://research.microsoft.com/sn/detours (visited on

2008/01/11))

Elf specification. (1995). (www.x86.org/ftp/manuals/tools/elf.pdf (visited on 2008/08/20))

Evron, G. (2006). Zeppoo: Decent rootkit detection for linux. (http://blogs.securiteam.com/index.

php/archives/433 (visited on 2008/09/29))

Florio, E. (2005, December). When malware meets rootkits. (http://www.symantec.com/avcenter/

reference/when.malware.meets.rootkits.pdf (visited on 2008/01/10))

Garg, M. (2006). Sysenter - fast transition to system call entry point. (http://manugarg.googlepages.

com/systemcallinlinux2_6.html (visited on 2008/09/29))

The gnu project debugger. (2008). (http://www.gnu.org/software/gdb/ (visited on 2008/08/17))

halfdead. (2008). Mistifying the debugger. (http://www.phrack.com/issues.html?issue=65&id=8

(visited on 2008/09/29))

Haungs, M. L. (1998). The executable and linking format. (http://www.cs.ucdavis.edu/˜haungs/

paper/node10.html (visited on 2008/09/29))

The i386 interrupt descriptor table. (2007). (http://www.acm.uiuc.edu/sigops/roll_your_own/

i386/idt.html (visited on 2008/09/29))

57

http://cgi.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html
http://cgi.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf
http://vx.netlux.org/lib/vsc07.html
http://vx.netlux.org/lib/vsc06.html
http://www.rootkit.com/newsread.php?newsid=187
http://www.rootkit.com/newsread.php?newsid=187
http://research.microsoft.com/sn/detours
www.x86.org/ftp/manuals/tools/elf.pdf
http://blogs.securiteam.com/index.php/archives/433
http://blogs.securiteam.com/index.php/archives/433
http://www.symantec.com/avcenter/reference/when.malware.meets.rootkits.pdf
http://www.symantec.com/avcenter/reference/when.malware.meets.rootkits.pdf
http://manugarg.googlepages.com/systemcallinlinux2_6.html
http://manugarg.googlepages.com/systemcallinlinux2_6.html
http://www.gnu.org/software/gdb/
http://www.phrack.com/issues.html?issue=65&id=8
http://www.cs.ucdavis.edu/~haungs/paper/node10.html
http://www.cs.ucdavis.edu/~haungs/paper/node10.html
http://www.acm.uiuc.edu/sigops/roll_your_own/i386/idt.html
http://www.acm.uiuc.edu/sigops/roll_your_own/i386/idt.html

Intel. (2008). Intel ia-32 manual. (http://download.intel.com/design/processor/manuals/

253668.pdf (visited on 2008/08/07))

Kaspersky lab. (n.d.). (www.kaspersky.com (visited on 2008/05/24))

Microsoft. (2006). Virtualization. (http://www.microsoft.com/whdc/system/platform/

virtual/CPUVirtExt.mspx (visited on 2008/09/29))

Miller, T. (2000, November). Analysis of the t0rn rootkit. (http://www.securityfocus.com/infocus/

1230 (visited on 2008/05/21))

MSDN. (1999). Memory management functions. (http://msdn.microsoft.com/en-us/library/

aa366781(VS.85).aspx (visited on 2008/09/29))

ptrace linux man page. (1999). (http://www.linuxmanpages.com/man2/ptrace.2.php (visited on

2008/08/05))

Rutkowska, J. (n.d.). System virginity verifier. (http://www.invisiblethings.org/papers/

hitb05_virginity_verifier.ppt (visited on 2008/03/04))

Rutkowska, J. (2004, January). Detecting windows server compromises with patchfinder 2. (http://www.

invisiblethings.org/papers/rootkits_detection_with_patchfinder2.pdf (vis-

ited on 2008/04/15))

Rutkowska, J. (2006, November). Malware taxonomy. (http://www.invisiblethings.org/papers/

malware-taxonomy.pdf (visited on 2008/02/16))

sd, & devik. (2001). Linux on-the-fly kernel patching without lkm. (http://www.phrack.com/issues.

html?issue=58&id=7 (visited on 2008/09/29))

Tripwire. (n.d.). (http://sourceforge.net/projects/tripwire (visited on 2008/04/17))

waitpid system call. (1997). (http://www.linuxmanpages.com/man2/wait4.2.php (visited on

2008/08/17))

58

http://download.intel.com/design/processor/manuals/253668.pdf
http://download.intel.com/design/processor/manuals/253668.pdf
www.kaspersky.com
http://www.microsoft.com/whdc/system/platform/virtual/CPUVirtExt.mspx
http://www.microsoft.com/whdc/system/platform/virtual/CPUVirtExt.mspx
http://www.securityfocus.com/infocus/1230
http://www.securityfocus.com/infocus/1230
http://msdn.microsoft.com/en-us/library/aa366781(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366781(VS.85).aspx
http://www.linuxmanpages.com/man2/ptrace.2.php
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://www.invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://www.invisiblethings.org/papers/rootkits_detection_with_patchfinder2.pdf
http://www.invisiblethings.org/papers/rootkits_detection_with_patchfinder2.pdf
http://www.invisiblethings.org/papers/malware-taxonomy.pdf
http://www.invisiblethings.org/papers/malware-taxonomy.pdf
http://www.phrack.com/issues.html?issue=58&id=7
http://www.phrack.com/issues.html?issue=58&id=7
http://sourceforge.net/projects/tripwire
http://www.linuxmanpages.com/man2/wait4.2.php

IAppendices

Appendix A
Hardware breakpoint hooking proof of concept

— Begin of “test.c” —

/∗ B a s i c a p p l i c a t i o n t o be i n t e r c e p t e d with t h e hardware b r e a k p o i n t method

∗

∗ Compi le :

∗ gcc −o t e s t t e s t . c

∗

∗ Author : Andre Almeida

∗ /

include ” s t d i o . h”

include <s i g n a l . h>

i n t simple (i n t value){

p r i n t f (” Simple : argument ! %d\n” , value) ;

return 5 ;

}

i n t main (){

i n t i ;

p r i n t f (”PID : %d wait 2 seconds . . . \ n” , getpid ()) ;

s l eep (1) ;

p r i n t f (” Simple () returned : %d\n” , simple (1 0)) ;

p r i n t f (”Running simple again :\n”) ;

p r i n t f (” Simple () returned : %d\n” , simple (1 1)) ;

return 0 ;

}

— End of “test.c” —

— Begin of “hijack.c” —

/∗

∗ Hardware b r e a k p o i n t h o o k i n g p r o o f o f c o n c e p t

∗

∗ Compi le :

∗ gcc −fPIC −c h i j a c k . c −o h i j a c k . o

∗ gcc −s h a r e d −o h i j a c k . s o h i j a c k . o

∗ LD PRELOAD= ” . / h i j a c k . s o ” . / t e s t

61

∗

∗ Author : Andre Almeida

∗ /

include <sys/ptrace . h>

include <wait . h>

include <sys/types . h>

include <l inux/user . h>

include <s t d i o . h>

include <s t d l i b . h>

/ / The b e g i n n i n g o f t h e f u n c t i o n t o i n t e r c e p t

/ / Compi le t h e t e s t . c a p p l i c a t i o n and c h e c k in GDB t h e

/ / a d d r e s s o f t h e symbol : s i m p l e f u n c t i o n

define HIJACK ADDR 0 x08048414

/ / Enab l e DR1 and Break on i n s t r u c t i o n e x e c u t i o n on ly

define ENABLE DR0 0 x00000001

i f ! defined (o f f s e t o f)

define o f f s e t o f (type ,memb) ((s i z e t)&((type∗)0)−>memb)

endif

typedef i n t (∗ s i m p l e f u n c t) (i n t) ;

s i m p l e f u n c t s imple func ;

i n t s e t b r e a k p o i n t (p i d t pid){

i f (p t race (PTRACE POKEUSER, pid , o f f s e t o f (s t r u c t user , u debugreg [0]) ,

HIJACK ADDR) != 0){

perror (”PTRACE POKEUSER”) ;

return 0 ;

}

i f (p t race (PTRACE POKEUSER, pid , o f f s e t o f (s t r u c t user , u debugreg [7]) ,

ENABLE DR0) != 0){

perror (”PTRACE POKEUSER”) ;

return 0 ;

}

return 1 ;

}

i n t c l e a r b r e a k p o i n t (p i d t pid){

i f (p t race (PTRACE POKEUSER, pid , o f f s e t o f (s t r u c t user , u debugreg [0]) ,

0 x00000000) != 0){

perror (”PTRACE POKEUSER”) ;

return 0 ;

}

62

i f (p t race (PTRACE POKEUSER, pid , o f f s e t o f (s t r u c t user , u debugreg [7]) ,

0 x00000000) != 0){

perror (”PTRACE POKEUSER”) ;

return 0 ;

}

return 1 ;

}

i n t h i j a c k s i m p l e (i n t value) {

i n t new value = 31338 ;

s imple func = (s i m p l e f u n c t)HIJACK ADDR ;

p r i n t f (” Executing h i j a c k s i m p l e parameter : %d , new parameter : %d\n” ,

value , new value) ;

s imple func (new value) ;

return 31337 ;

}

p i d t s i g t r a p w a i t (){

p i d t w a i t r e t ;

i n t s t a t u s ;

while (1){

i f ((w a i t r e t = wait (& s t a t u s)) == −1) { / / Wait f o r c h i l d ’ s s i g n a l

perror (” wait ”) ;

break ;

}

i f (WIFSTOPPED(s t a t u s)){

i f (WSTOPSIG(s t a t u s) == SIGTRAP){ /∗ i t i s a b r e a k p o i n t t r a p ∗ /

return w a i t r e t ;

} e lse

continue ;

} e lse

continue ;

}

return w a i t r e t ;

}

void a t t r i b u t e ((c o n s t r u c t o r))

s t a r t u p ()

{

i n t s t a t u s ;

p i d t pid , t e s t p i d ;

s t r u c t u s e r r e g s s t r u c t regs ;

switch (pid = fork ()) {

case −1:

perror (” fork ”) ;

break ;

63

case 0 : /∗ c h i l d p r o c e s s s t a r t s ∗ /

break ;

default :

i f (p t race (PTRACE ATTACH, pid , NULL, NULL) != 0)

perror (”PTRACE ATTACH”) ;

i f (wait (& s t a t u s) == −1) / / Wait f o r c h i l d ’ s s i g n a l

break ;

/ / Change t h e debug r e g i s t e r s

i f (! s e t b r e a k p o i n t (pid))

break ;

i f (p t race (PTRACE CONT, pid , 0 , 0) != 0)

perror (”PTRACE CONT”) ;

while (1) {

i f (s i g t r a p w a i t () == −1) { / / Wait f o r c h i l d ’ s s i g n a l

break ;

}

/ / chang ing EIP

i f (p t race (PTRACE GETREGS, pid , NULL, ®s) != 0){

perror (”PTRACE GETREGS”) ;

break ;

}

regs . e ip = (i n t) h i j a c k s i m p l e ;

i f (p t race (PTRACE SETREGS , pid , NULL, ®s) != 0){

perror (”PTRACE SETREGS”) ;

break ;

}

i f (p t race (PTRACE CONT, pid , 0 , 0) != 0){

perror (”PTRACE CONT”) ;

break ;

}

i f (s i g t r a p w a i t () == −1) { / / Wait f o r c h i l d ’ s s i g n a l

break ;

}

/∗ c l e a r b r e a k p o i n t w h i l e we e x e c u t e t h e i n s t r u c t i o n ∗ /

i f (! c l e a r b r e a k p o i n t (pid))

return ;

64

i f (p t race (PTRACE SINGLESTEP , pid , 0 , 0) != 0){

perror (”PTRACE STEP”) ;

break ;

}

/∗ r e s t o r e b r e a k p o i n t ∗ /

i f (! s e t b r e a k p o i n t (pid))

return ;

i f (p t race (PTRACE CONT, pid , 0 , 0) != 0){

perror (”PTRACE CONT”) ;

break ;

}

/ / c o n t i n u i n g t h e c y c l e t o m a i n t a i n t h e hook a c t i v e

}

e x i t (0) ; /∗ e x i t p r o c e s s b e c a u s e r e t u r n runs t h e e x e c u t a b l e

(t h i s f o r k e d p r o c e s s) ∗ /

}

}

— End of “hijack.c” —

Appendix B
User-Land Memory Integrity Scanner

— Begin of “memscan.c” —

/∗ Memory i n t e g r i t y s c a n n e r

∗

∗ Compi le :

∗ gcc −o memscan memscan . c

∗

∗ Author : Andre Almeida

∗

∗ /

include <s t d i o . h>

include <unistd . h>

include <sys/types . h>

include <sys/ s t a t . h>

include <f c n t l . h>

include <s t r i n g . h>

include <errno . h>

include <time . h>

65

/ / e l f i n c l u d e s

include <l i n k . h>

include <e l f . h>

include <sys/mman. h>

/ / p t r a c e i n c l u d e s

include <sys/ptrace . h>

/ / d i r i n c l u d e s

include <d i r e n t . h>

include <ctype . h>

define HEXSIZE 8

define MAX PATH LEN 128

define PROCKALLSYMS ”/proc/kallsyms ”

define MAPS REFIX ”/proc/”

define MAPS SUFFIX ”/maps”

i f d e f FreeBSD

def ine ELF (x) E l f ##x

else

def ine ELF (x) ElfW (x)

endif

void∗ mapfi le (char∗ path , unsigned long∗ s ize , i n t ∗ fd no)

{

s t r u c t s t a t s ;

FILE∗ f ;

f = fopen (path , ” r ”) ;

f s t a t (f i l e n o (f) , &s) ;

∗ s i z e = s . s t s i z e ;

∗ fd no = f i l e n o (f) ;

return mmap(NULL, s . s t s i z e , PROT READ, MAP PRIVATE, ∗ fd no , 0) ;

}

i n t memscan pid (void∗ base , unsigned long begin addr , p i d t pid)

{

unsigned i n t i , ec , symcount , count , re s = 1 ;

char∗ codePos ;

unsigned long∗ bytecode ;

unsigned long peekbyte ;

ELF (Ehdr)∗ e = base ;

ELF (Shdr)∗ shdr = (ELF (Shdr) ∗) ((char ∗) e + e−>e s h o f f) ;

ELF (Sym)∗ sym = 0 ;

Elf32 Word nameIndex ;

66

Elf32 Word s t r t a b s i z e ;

char∗ s t r t a b = 0 ;

count = 0 ;

for (i = 0 ; i < e−>e shnum ; i ++) {

i f (shdr−>sh type == SHT SYMTAB) {

sym = (ELF (Sym) ∗) ((char ∗) e + shdr−>s h o f f s e t) ;

symcount = shdr−>s h s i z e / s i ze of (ELF (Sym)) ;

}

e lse i f (shdr−>sh type == SHT STRTAB){

i f (count == 1){

s t r t a b = (char ∗) ((char ∗) e + shdr−>s h o f f s e t) ;

s t r t a b s i z e = (Elf32 Word) ((char ∗) e + shdr−>s h s i z e) ;

break ;

}

count ++;

}

shdr ++;

}

shdr = (ELF (Shdr) ∗) ((char ∗) e + e−>e s h o f f) ;

for (i = 0 ; i < e−>e shnum ; i ++) {

i f (! strcmp (” . t e x t ” , &s t r t a b [shdr−>sh name])) {

codePos = (char ∗) e + shdr−>s h o f f s e t ;

for (ec = 0 ; ec < shdr−>s h s i z e /4; ec +=1){

bytecode = (unsigned long ∗) codePos+ec ;

peekbyte = ptrace (PTRACE PEEKTEXT ,

pid , begin addr + shdr−>s h o f f s e t + ec ∗4 , 0) ;

i f (errno == ESRCH){ / / a r e we t r a c i n g a non−e x i s t e n t p r o c e s s ?

perror (”PTRACE PEEKTEXT”) ;

return 0 ;

}

i f (∗ bytecode != peekbyte){

p r i n t f (”\nWARNING − O f f s e t : 0x%.8x : 0x%.8x (DISK) != 0x%.8x (MEM) ! ” ,

begin addr + shdr−>s h o f f s e t + ec ∗4 ,

∗bytecode , peekbyte) ;

re s = 0 ;

}

}

break ;

}

shdr ++;

}

67

return r es ;

}

i n t memscan (p i d t pid , unsigned long begin addr , unsigned long end addr , char∗ f i l e p a t h){

unsigned long s i z e ;

Elf32 Addr o f f s e t ;

void∗ handle ;

i n t fd no , r es = 0 ;

i f ((handle = (void ∗) mapfi le (f i l e p a t h , &size , &fd no)) == MAP FAILED){

perror (”mmap”) ;

r es = 0 ;

} e lse{

r es = memscan pid (handle , begin addr , pid) ;

munmap(handle , s i z e) ;

c l o s e (fd no) ;

}

return r es ;

}

unsigned long p r o c v e r i f y (p i d t pid){

char addresses [HEXSIZE∗2 +1] ;

char ∗ end addr s t r ;

char permissions [MAX PATH LEN+ 1] ;

char c u r r e n t f i l e p a t h [MAX PATH LEN+ 1] ;

char maps path [3 2] ;

unsigned long begin addr , end addr ;

i n t re s = 1 , r e t r e s = 1 ;

FILE ∗mapfi le ;

s p r i n t f (maps path , ”%s%d%s ” , MAPS REFIX , pid , MAPS SUFFIX) ;

mapfi le = fopen (maps path , ” r ”) ;

while (f s c a n f (mapfile , ”%s %s %∗s %∗s %∗s ” , addresses , permissions) != −1){

while (f read (c u r r e n t f i l e p a t h , 1 , 1 , mapfi le) != 0){

c u r r e n t f i l e p a t h [1] = ’ \0 ’ ;

i f (strcmp (c u r r e n t f i l e p a t h , ”\n”) == 0){

c u r r e n t f i l e p a t h [0] = ’ \0 ’ ;

break ;

}

i f (strcmp (c u r r e n t f i l e p a t h , ”/”) == 0){

/ / Th i s l i n e has a s l a s h , t h e e x e c u t a b l e e x i s t s , s o rewind and f s c a n f

f seek (mapfile , −1, SEEK CUR) ;

f s c a n f (mapfile , ”%s\n” , c u r r e n t f i l e p a t h) ;

68

break ;

}

}

i f (strcmp (permissions , ”r−xp”) == 0 && c u r r e n t f i l e p a t h [0] != ’ \0 ’) {

addresses [HEXSIZE] = ’ \0 ’ ;

begin addr = s t r t o u l (addresses , NULL, 1 6) ;

end addr = s t r t o u l (addresses + HEXSIZE + 1 , NULL, 1 6) ;

/ / Do t h e scan

r es = memscan (pid , begin addr , end addr , c u r r e n t f i l e p a t h) ;

i f (! r es){

p r i n t f (”\nObject \”%s\” modified in memory ! ” , c u r r e n t f i l e p a t h) ;

}

i f (! r es && r e t r e s)

r e t r e s = 0 ;

}

}

f c l o s e (mapfi le) ;

return r e t r e s ;

}

i n t pid scan (p i d t pid){

i n t s ta tus , re s = 0 ;

i f (p t race (PTRACE ATTACH, pid , NULL, NULL) != 0){

perror (”\nPTRACE ATTACH”) ;

return r es ;

}

wait (& s t a t u s) ;

r es = p r o c v e r i f y (pid) ;

i f (p t race (PTRACE DETACH, pid , NULL, NULL) != 0){

perror (”\nPTRACE DETACH”) ;

r es = 0 ;

}

return r es ;

}

void s c a n t a s k s (){

DIR ∗ dir , ∗ r d i r ;

i n t pid ;

69

s t r u c t d i r e n t ∗ entry , ∗ rent ry ;

char f i l e [2 0] ;

char d i r e c t o r y [6 4] ;

char r f i l e [6 4] ;

t i m e t mytime ;

s t r u c t tm ∗brokentime ;

i f ((d i r = opendir (”/proc ”)) == NULL){

perror (” opendir /proc : ”) ;

return ;

}

e lse{

while ((entry = readdir (d i r)) != NULL){

i f (i s d i g i t (entry−>d name [0]) != 0){

pid = a t o i (entry−>d name) ;

i f (pid != 1 && pid != getpid ()) {

time(&mytime) ;

brokentime = (s t r u c t tm∗) l o c a l t i m e (&mytime) ;

p r i n t f (” [%.2d:%.2d:%.2d] Scanning pid %d . . . ” , brokentime−>tm hour ,

brokentime−>tm min , brokentime−>tm sec , pid) ;

f f l u s h (stdout) ;

i f (pid scan (pid))

p r i n t f (”OK\n”) ;

e lse

p r i n t f (”\nFai led\n”) ;

}

}

}

}

}

i n t main (i n t argc , char ∗∗argv){

p i d t pid ;

i f (argc == 2){

pid = a t o i (argv [1]) ;

p r i n t f (” Scanning pid %d . . . ” , pid) ;

f f l u s h (stdout) ;

i f (pid scan (pid))

p r i n t f (”OK\n”) ;

e lse

p r i n t f (”\nFai led\n”) ;

} e lse

s c a n t a s k s () ;

return 0 ;

}

70

— End of “memscan.c” —

Appendix C
HWBP detection and prevention module

— End of “ptracemod.c” —

/∗

∗ Hardware b r e a k p o i n t h o o k i n g d e t e c t i o n and p r e v e n t i o n module .

∗

∗ Author : Andre Almeida

∗ /

include <l inux/module . h>

include <l inux/kernel . h>

include <l inux/unistd . h>

include <l inux/ s y s c a l l s . h>

include <l inux/ p r o c f s . h>

include <asm/uaccess . h>

include <l inux/kallsyms . h>

include <l inux/errno . h>

include <asm/i387 . h>

include ” ptrace . h”

define AUTHOR ”Andre Almeida”

define VERSION ”v1 . 0 ”

define ARCH 0

define PROCKALLSYMS ”/proc/kallsyms ”

define MODNAME ”HWBP Defender”

define HEXSIZE 8

define KMEMBASE 0 xc0000000

/∗ wai t macros ∗ /

define WAIT INT (s t a t u s) (s t a t u s)

define WIFSTOPPED (s t a t u s) (((s t a t u s) & 0 x f f) == 0 x7f)

define WSTOPSIG (s t a t u s) WEXITSTATUS (s t a t u s)

define WEXITSTATUS (s t a t u s) (((s t a t u s) & 0 x f f 0 0) >> 8)

define WIFSTOPPED(s t a t u s) WIFSTOPPED (WAIT INT (s t a t u s))

define WSTOPSIG(s t a t u s) WSTOPSIG (WAIT INT (s t a t u s))

/∗ end o f wa i t macros ∗ /

unsigned long bp addr ;

71

i n t d r 7 s e t ;

p i d t watch pid = −1, t a r g e t p i d = −1;

s t a t i c void ∗∗ s y s c a l l t a b l e ; /∗ k e r n e l s y s c a l l t a b l e ∗ /

ulong g e t e i p (s t r u c t t a s k s t r u c t ∗) ;

/∗ c o d e t o f i n d t h e sys t em c a l l t a b l e from SuckIT R o o t k i t ∗ /

s t r u c t i d t r {

ushort l i m i t ;

ulong base ;

} a t t r i b u t e ((packed)) ;

s t r u c t i d t {

ushort o f f 1 ;

ushort s e l ;

u char none , f l a g s ;

ushort o f f 2 ;

} a t t r i b u t e ((packed)) ;

/∗ f rom SuckIT ∗ /

void ∗memmem(char ∗s1 , i n t l1 , char ∗s2 , i n t l 2) {

i f (! l 2)

return s1 ;

while (l 1 >= l 2)

{

l1−−;

i f (!memcmp(s1 , s2 , l 2)){

return s1 ;

}

s1 ++;

}

return (NULL) ;

}

/∗ f rom SuckIT ∗ /

ulong g e t s c t (ulong ep) {

def ine SCLEN 512

char code [SCLEN] ;

char ∗p ;

ulong r ;

memcpy(&code , (void ∗) ep , SCLEN) ;

p = (char ∗) memmem(code , SCLEN, ”\ x f f \x14\x85” , 3) ;

i f (! p)

return 0 ;

r = ∗ (ulong ∗) (p + 3) ;

return r ;

}

72

/∗ f rom SuckIT ∗ /

/∗ even i f t h e k e r n e l u s e s t h e s y s e n t e r f a s t c a l l t o p r o c e s s sys t em c a l l s ,

∗ t h i s w i l l work t o o b e c a u s e t h e k e r n e l c o d e f o r t h e i n t 80 s t u b i s t h e r e ! ∗ /

s t a t i c u long l o c a t e s y s c a l l t a b l e (void) {

s t r u c t i d t r i d t r ;

s t r u c t i d t i d t 8 0 ;

ulong old80 , sc t , o f fp ;

asm (” s i d t %0” : ”=m” (i d t r)) ;

o f fp = i d t r . base + (0 x80 ∗ s i ze of (i d t 8 0)) ;

memcpy(& idt80 , (void ∗) offp , s i ze of (i d t 8 0)) ;

old80 = i d t 8 0 . o f f 1 | (i d t 8 0 . o f f 2 << 1 6) ;

s c t = g e t s c t (old80) ;

return (s c t) ;

}

/∗ g e t t a s k s t r u c t o f a p r o c e s s by p i d ∗ /

s t r u c t t a s k s t r u c t ∗g e t t a s k f r o m p i d (p i d t pid){

s t r u c t t a s k s t r u c t ∗ task ;

f o r e a c h p r o c e s s (task)

i f (task−>pid == pid)

return task ;

return NULL;

}

/∗ s y s w a i t p i d ∗ /

s t a t i c asmlinkage long (∗ o r i g w a i t 4) (p i d t pid , i n t u s e r ∗ s ta tus ,

i n t options , s t r u c t rusage u s e r ∗ru) ;

s t a t i c asmlinkage long our wait4 (p i d t pid , i n t u s e r ∗ s ta tus ,

i n t options , s t r u c t rusage u s e r ∗ru){

s t r u c t t a s k s t r u c t ∗ task ;

p i d t r e t p i d ;

ulong eip ;

r e t p i d = o r i g w a i t 4 (pid , s ta tus , options , ru) ;

e ip = 0 ;

i f (WIFSTOPPED(∗ s t a t u s)){

i f (WSTOPSIG(∗ s t a t u s) == SIGTRAP){ /∗ i t i s a b r e a k p o i n t t r a p ∗ /

i f (r e t p i d != −1){ / / wa i t4 d i d not r e t u r n e r r o r ?

i f ((task = g e t t a s k f r o m p i d (r e t p i d)) != NULL){

eip = g e t e i p (task) ;

i f ((task−>thread . debugreg [6] & 0 x00000001) == 0 x00000001 | |

(task−>thread . debugreg [6] & 0 x00000002) == 0 x00000002 | |

(task−>thread . debugreg [6] & 0 x00000004) == 0 x00000004 | |

73

(task−>thread . debugreg [6] & 0 x00000008) == 0 x00000008){

/∗ Hardware B r e a k p o i n t t r i g g e r e d ! ∗ /

/∗ s t a t e one ! ∗ /

bp addr = eip ;

watch pid = current−>pid ;

t a r g e t p i d = r e t p i d ;

pr in tk (”HWBP t r i g g e r e d on pid %d , by pid %d\n” ,

retpid , current−>pid) ;

}

}

}

}

}

return r e t p i d ;

}

/∗ s y s p t r a c e ∗ /

s t a t i c asmlinkage long (∗ o r i g p t r a c e) (enum p t r a c e r e q u e s t request , p i d t pid ,

void ∗addr , void ∗data) ;

s t a t i c asmlinkage long our ptrace (enum p t r a c e r e q u e s t request , p i d t pid ,

void ∗addr , void ∗data){

s t r u c t u s e r r e g s s t r u c t ∗ regs ;

s t r u c t t a s k s t r u c t ∗ task ;

i n t abort = 0 , r e t = −1;

ulong eip ;

i f (request == PTRACE SETREGS){

regs = (s t r u c t u s e r r e g s s t r u c t ∗) data ;

i f (watch pid == current−>pid && t a r g e t p i d == pid) {

i f ((task = g e t t a s k f r o m p i d (pid)) != NULL){

eip = g e t e i p (task) ;

i f (e ip == bp addr && regs−>eip != bp addr){

/∗ s t a t e two ! warning ! ∗ /

abort = 1 ;

task−>thread . debugreg [0] = 0x0 ;

task−>thread . debugreg [7] = 0x0 ;

pr in tk (”WARNING: PID : %d − HWBP ATTEMPT on process %d!\n” ,

current−>pid , pid) ;

}

}

}

}

/∗ r e t u r n t o s t a t e z e r o ∗ /

i f (request == PTRACE CONT){

i f (watch pid == current−>pid){

74

watch pid = −1;

t a r g e t p i d = −1;

}

}

i f (! abort)

r e t = o r i g p t r a c e (request , pid , addr , data) ;

return r e t ;

}

void s y s c a l l h o o k (void){

/∗ hook s y s p t r a c e sys t em c a l l ∗ /

o r i g p t r a c e = s y s c a l l t a b l e [NR ptrace] ;

s y s c a l l t a b l e [NR ptrace] = our ptrace ;

/∗ hook s y s w a i t 4 sys t em c a l l ∗ /

o r i g w a i t 4 = s y s c a l l t a b l e [NR wait4] ;

s y s c a l l t a b l e [NR wait4] = our wait4 ;

}

/∗ unhooks t h e s y s c a l l s ∗ /

void sys ca l l unhook (void){

s y s c a l l t a b l e [NR ptrace] = o r i g p t r a c e ;

s y s c a l l t a b l e [NR wait4] = o r i g w a i t 4 ;

}

void i n i t v a r s (void){

bp addr = −1;

d r 7 s e t = 0 ;

}

/∗ b e g i n k e r n e l c o d e o f p t r a c e . c

∗ t h i s c o d e i s n e ed ed t o f i n d t h e EIP o f an a d d r e s s ∗ /

s t a t i c i n l i n e i n t g e t s t a c k l o n g (s t r u c t t a s k s t r u c t ∗ task , i n t o f f s e t)

{

unsigned char ∗ s tack ;

s tack = (unsigned char ∗) task−>thread . esp0 − s i ze of (s t r u c t p t r e g s) ;

s tack += o f f s e t ;

return (∗ ((i n t ∗) s tack)) ;

}

s t a t i c unsigned long my getreg (s t r u c t t a s k s t r u c t ∗ chi ld ,

unsigned long regno)

{

unsigned long r e t v a l = ˜0UL;

75

switch (regno >> 2) {

case GS :

r e t v a l = chi ld−>thread . gs ;

break ;

case DS :

case ES :

case FS :

case SS :

case CS :

r e t v a l = 0 x f f f f ;

/∗ f a l l th rough ∗ /

default :

i f (regno > FS∗4)

regno −= 1∗4 ;

r e t v a l &= g e t s t a c k l o n g (chi ld , regno) ;

}

return r e t v a l ;

}

/∗ end k e r n e l c o d e o f p t r a c e . c ∗ /

ulong g e t e i p (s t r u c t t a s k s t r u c t ∗ task){

ulong e i p o f f s e t , e ip ;

e i p o f f s e t = o f f s e t o f (s t r u c t u s e r r e g s s t r u c t , e ip) ;

e ip = my getreg (task , e i p o f f s e t) ;

return eip ;

}

i n t in i t module (void){

u long sc t ad dr ;

pr in tk (”HWBP defender : S t a r t e d .\n”) ;

s c t ad dr = l o c a t e s y s c a l l t a b l e () ;

i f (! s c t ad dr) {

pr intk (”Cannot f ind s y s c a l l t a b l e . Aborting\n”) ;

return 0 ;

}

s y s c a l l t a b l e = (void ∗) s c t ad dr ;

pr in tk (” s y s c a l l t a b l e @ %p\n” , s y s c a l l t a b l e) ;

i n i t v a r s () ;

/∗ h o o k s t h e s y s c a l l s ∗ /

s y s c a l l h o o k () ;

return 0 ;

76

}

void cleanup module (void){

/∗ dont f o r g e t t o unhooks t h e s y s c a l l s ∗ /

sys ca l l unhook () ;

pr in tk (”HWBP defender : Stopped .\n”) ;

}

MODULE LICENSE(”GPL”) ;

MODULE AUTHOR(AUTHOR) ;

MODULE DESCRIPTION(VERSION) ;

Appendix D
Proactive Detection System

— Begin of “sctdefender.c” —

/∗

∗ Author : Andre Almeida

∗ S p e c i a l t h a n k s t o Da n i e l Almeida

∗ /

include <l inux/module . h>

include <l inux/kernel . h>

include <l inux/unistd . h>

include <l inux/ s y s c a l l s . h>

include <l inux/ p r o c f s . h>

include <asm/uaccess . h>

include <l inux/kallsyms . h>

include ”main . h”

define AUTHOR ”Andre Almeida”

define VERSION ” S y s c a l l defender ”

/∗ p o i n t e r s t h e our s c t t a b l e s ∗ /

void ∗∗m y s y s c a l l t a b l e ; /∗ our copy o f t h e o r i g i n a l s y s c a l l t a b l e ∗ /

void ∗∗ s y s c a l l t a b l e ; /∗ k e r n e l s y s c a l l t a b l e ∗ /

void ∗∗ c o r r e c t s y s c a l l t a b l e ; /∗ c o r r e c t k e r n e l s y s c a l l t a b l e

a f t e r p r o a c t i v e d e f e n s e sys t em i n s t a l l e d ∗ /

typedef i n t (∗ r e a d d i r t) (s t r u c t f i l e ∗ , void ∗ , f i l l d i r t) ;

s t a t i c ulong f i n d i n t 8 0 h a n d l e r (void) ;

unsigned long ∗ k e r n e l s y s c a l l j m p ;

unsigned long s t u b f u n c s h i f t = 0 ;

77

unsigned long kernel code begin , kernel code end , sysenter entry addr , s y s t e m c a l l a d d r ;

s t r u c t s tack frame {

s t r u c t s tack frame ∗next frame ;

unsigned long re turn address ;

} ;

/∗ g e t ’ s symbo l s from / p r o c / k a l l s y m s USERSPACE ∗ /

unsigned long get kernel symbol (char ∗symbol name){

i n t fd , i ;

char values [HEXSIZE + 1] ;

char type [3 + 1] ;

char name[KSYM NAME LEN+ 1] ; /∗ max k e r n e l symbol name l e n g t h ∗ /

mm segment t o l d f s = g e t f s () ;

s e t f s (KERNEL DS) ;

fd = sys open (PROCKALLSYMS, O RDONLY, 0) ;

i f (fd >= 0) {

/∗ s t r i n g p a r s i n g ∗ /

while (sys read (fd , values , HEXSIZE) == HEXSIZE){

sys read (fd , type , 3) ;

for (i =0 ; i<KSYM NAME LEN; i ++){

sys read (fd , name+i , 1) ;

i f (name[i] == ’\n ’){

name[i] = ’ \0 ’ ;

break ;

}

}

/∗ t h e r e ’ s a match ∗ /

i f (! strcmp (symbol name , name)){

s y s c l o s e (fd) ;

s e t f s (o l d f s) ;

return s i m p l e s t r t o u l (values ,NULL, 1 6) ;

}

memset (values , ’ \0 ’ ,HEXSIZE + 1) ;

memset (type , ’ \0 ’ , 4) ;

memset (name , ’ \0 ’ ,KSYM NAME LEN+ 1) ;

}

s y s c l o s e (fd) ;

}

s e t f s (o l d f s) ;

/∗ symbol not found ∗ /

return 0 ;

}

78

i n t v e r i f y s y s e n t e r (void) {

unsigned long sysenter addr ;

asm (”movl $0x176 , %%ecx ; ”

”rdmsr ; ”

”movl %%eax , %0;”

: ”=r ” (sysenter addr) :) ;

return (sysenter addr == s y s e n t e r e n t r y a d d r) ;

}

s t a t i c i n t v e r i f y i n t 8 0 (void){

ulong int80 addr = f i n d i n t 8 0 h a n d l e r () ;

return (in t80 addr == s y s t e m c a l l a d d r) ;

}

s t a t i c i n t v e r i f y s y s c a l l j m p (void){

return (∗ k e r n e l s y s c a l l j m p == s y s c a l l t a b l e) ;

}

i n t v e r i f y t a b l e e n t r y (i n t sys ca l l number){

return (∗ (s y s c a l l t a b l e + sys ca l l number) == ∗ (c o r r e c t s y s c a l l t a b l e + sys ca l l number)) ;

}

i n t v e r i f y i n l i n e (i n t sys ca l l number){

char ∗memp;

memp = ∗ (c o r r e c t s y s c a l l t a b l e + sys ca l l number) ;

return (∗memp != ’ E9 ’) ;

}

/∗ f rom SuckIT ∗ /

s t r u c t i d t r {

ushort l i m i t ;

ulong base ;

} a t t r i b u t e ((packed)) ;

s t r u c t i d t {

ushort o f f 1 ;

ushort s e l ;

u char none , f l a g s ;

ushort o f f 2 ;

} a t t r i b u t e ((packed)) ;

/∗ f rom SuckIT ∗ /

void ∗memmem(char ∗s1 , i n t l1 , char ∗s2 , i n t l 2) {

i f (! l 2)

return s1 ;

79

while (l 1 >= l 2)

{

l1−−;

i f (!memcmp(s1 , s2 , l 2)){

return s1 ;

}

s1 ++;

}

return (NULL) ;

}

s t a t i c ulong f i n d i n t 8 0 h a n d l e r (void) {

s t r u c t i d t r i d t r ;

s t r u c t i d t i d t 8 0 ;

ulong old80 , of fp ;

asm (” s i d t %0” : ”=m” (i d t r)) ;

o f fp = i d t r . base + (0 x80 ∗ s i ze of (i d t 8 0)) ;

memcpy(& idt80 , (void ∗) offp , s i ze of (i d t 8 0)) ;

old80 = i d t 8 0 . o f f 1 | (i d t 8 0 . o f f 2 << 1 6) ;

return old80 ;

}

/∗ f rom SuckIT ∗ /

ulong g e t s c t (ulong ep) {

def ine SCLEN 512

char code [SCLEN] ;

char ∗p ;

ulong r ;

memcpy(&code , (void ∗) ep , SCLEN) ;

p = (char ∗) memmem(code , SCLEN, ”\ x f f \x14\x85” , 3) ;

i f (! p)

return 0 ;

k e r n e l s y s c a l l j m p = ep + (p + 3) − code ;

r = ∗ (ulong ∗) (p + 3) ;

return r ;

}

/∗ f rom SuckIT ∗ /

/∗ even i f t h e k e r n e l u s e s t h e s y s e n t e r f a s t c a l l t o p r o c e s s sys t em c a l l s ,

t h i s w i l l work t o o b e c a u s e t h e k e r n e l c o d e f o r t h e i n t 80 s t u b i s t h e r e ! ∗ /

s t a t i c u long l o c a t e s y s c a l l t a b l e (void) {

ulong s c t ;

s c t = g e t s c t (f i n d i n t 8 0 h a n d l e r ()) ;

return (s c t) ;

}

80

i n t i n s i d e k e r n e l c o d e (unsigned long addr){

i f (addr >= kerne l code begin && addr <= kernel code end)

return 1 ;

e lse

return 0 ;

}

i n t f i n d k e r n e l c o d e l i m i t s (void){

kerne l code begin = get kernel symbol (” s t e x t ”) ;

kernel code end = get kernel symbol (” e t e x t ”) ;

i f (kerne l code begin == 0 | | kernel code end == 0)

return 0 ;

e lse

return 1 ;

}

s t a t i c i n l i n e i n t m y v a l i d s t a c k p t r (s t r u c t t h r e a d i n f o ∗ t i n f o , void ∗p , unsigned s i z e)

{

return p > (void ∗) t i n f o &&

p <= (void ∗) t i n f o + THREAD SIZE − s i z e ;

}

s t a t i c i n l i n e unsigned long p r i n t c o n t e x t s t a c k (s t r u c t t h r e a d i n f o ∗ t i n f o ,

unsigned long ebp ,

i n t sys ca l l number)

{

i f d e f CONFIG FRAME POINTER

i n t s tack depth = 0 ;

unsigned long a d d r s h i f t ;

s t r u c t s tack frame ∗ frame = (s t r u c t s tack frame ∗) ebp ;

while (m y v a l i d s t a c k p t r (t i n f o , frame , s i ze of (∗ frame))) {

s t r u c t s tack frame ∗next ;

unsigned long addr ;

addr = frame−>re turn address ;

next = frame−>next frame ;

switch (s tack depth){

case 0 :

a d d r s h i f t = addr − (unsigned long)∗ (c o r r e c t s y s c a l l t a b l e +

sys ca l l number) ;

i f (s t u b f u n c s h i f t == 0)

s t u b f u n c s h i f t = a d d r s h i f t ;

e lse i f (a d d r s h i f t != s t u b f u n c s h i f t)

pr in tk (”WARNING! D i f f e r e n c e between : 0x%x and 0x%x !\n” ,

s t u b f u n c s h i f t , a d d r s h i f t) ;

81

break ;

case 1 :

i f (! i n s i d e k e r n e l c o d e (addr))

pr in tk (”WARNING! 0x%x should be i n s i d e kernel code !\n” , addr) ;

break ;

default :

pr in tk (”WARNING! Cal l s tack too big , something i s wrong !\n”) ;

break ;

}

i f (next <= frame)

break ;

frame = next ;

s tack depth ++;

}

endif

return ebp ;

}

void check s tack (unsigned long s t a c k p o i n t e r , unsigned long s t a r t e b p , unsigned long sys ca l l number){

unsigned long ebp = 0 ;

unsigned long s tack ;

s tack = s t a c k p o i n t e r ;

ebp = s t a r t e b p ;

while (1) {

s t r u c t t h r e a d i n f o ∗ contex t ;

contex t = (s t r u c t t h r e a d i n f o ∗)

((unsigned long) s tack & (˜ (THREAD SIZE − 1))) ;

ebp = p r i n t c o n t e x t s t a c k (context , ebp , sys ca l l number) ;

s tack = (unsigned long) context−>previous esp ;

i f (! s tack)

break ;

}

}

/∗ h e r e i s where t h e sys t em g e t s i n s p e c t e d ∗ /

void syscheck (unsigned long addr , i n t sys cal l number ,

unsigned long s t a c k p o i n t e r , unsigned long s t a r t e b p){

i f (! v e r i f y t a b l e e n t r y (sys ca l l number))

pr in tk (”WARNING! S y s c a l l %d hi jacked !\n” , sys ca l l number) ;

i f d e f CONFIG FRAME POINTER

check s tack (s t a c k p o i n t e r , s t a r t e b p , sys ca l l number) ;

endif

82

i f (! v e r i f y s y s e n t e r ())

pr in tk (”WARNING: IA32 SYSENTER EIP hi jacked !\n”) ;

i f (! v e r i f y i n t 8 0 ())

pr in tk (”WARNING: i n t 8 0 handler h i j acked !\n”) ;

i f (! v e r i f y s y s c a l l j m p ())

pr in tk (”WARNING: s y s t e m c a l l jump modified !\n”) ;

i f (! v e r i f y i n l i n e (sys ca l l number))

pr in tk (”WARNING: jmp at the beginning of the s y s c a l l number %d!\n” , sys ca l l number) ;

}

unsigned long p r o c e s s c a l l (i n t cal l number){

unsigned long jmp sysca l l , s t a c k p o i n t e r , s t a r t e b p ;

asm (”movl %%ebp , %0” : ”=r ” (s t a r t e b p) :) ;

j m p s y s c a l l = (unsigned long)∗ (m y s y s c a l l t a b l e + call number) ;

asm (”movl %%esp , %0” : ”=r ” (s t a c k p o i n t e r) :) ;

/ / s y s c a l l v e r i f i c a t i o n g o e s h e r e !

syscheck (jmp sysca l l , call number , s t a c k p o i n t e r , s t a r t e b p) ;

return j m p s y s c a l l ;

}

void sys ca l l unhook (void){

/ / r e s t o r e t o t h e o r i g i n a l t a b l e

i n t i ;

for (i = 0 ; i < SCT SIZE ; i ++){

s y s c a l l t a b l e [i] = m y s y s c a l l t a b l e [i] ;

}

}

void c l o n e t a b l e (void){

m y s y s c a l l t a b l e = kmalloc (SYS CALL TABLE SIZE , GFP KERNEL) ;

memcpy(m y s y s c a l l t a b l e , s y s c a l l t a b l e , SYS CALL TABLE SIZE) ;

}

i n t s y s c a l l t a b l e s c a n (void){

i n t i , va l id = 1 ;

for (i = 0 ; i < SCT SIZE ; i ++){

i f (! i n s i d e k e r n e l c o d e ((unsigned long)∗ (s y s c a l l t a b l e + i))) {

pr intk (” Function %d not i n s i d e kernel code (0 x%.8x) !\n” ,

i , (unsigned long)∗ (s y s c a l l t a b l e + i)) ;

va l id = 0 ;

}

83

}

return val id ;

}

i n t in i t module (void){

u long sc t ad dr ;

i n t i ;

pr in tk (”SCT Defender Loaded ! . . . \ n”) ;

s y s e n t e r e n t r y a d d r = get kernel symbol (” s y s e n t e r e n t r y ”) ;

s y s t e m c a l l a d d r = get kernel symbol (” s y s t e m c a l l ”) ;

i f (! v e r i f y i n t 8 0 ())

pr in tk (”WARNING: i n t 8 0 handler h i j acked !\n”) ;

e lse

pr intk (” I n t e r r u p t 80 OK\n”) ;

i f (! v e r i f y s y s e n t e r ())

pr in tk (”WARNING: Sysenter i n s t r u c t i o n hi jacked !\n”) ;

e lse

pr intk (” Sysenter i n s t r u c t i o n OK\n”) ;

i f (! f i n d k e r n e l c o d e l i m i t s ()) {

pr intk (” kernel code l i m i t s not found !\n”) ;

return −1;

}

sc t ad dr = l o c a t e s y s c a l l t a b l e () ;

i f (! s c t ad dr) {

pr intk (”Cannot f ind s y s c a l l t a b l e . Aborting\n”) ;

return 0 ;

}

s y s c a l l t a b l e = (void ∗) s c t ad dr ;

pr in tk (”SCT Defender : s y s c a l l t a b l e a t %p\n” , s y s c a l l t a b l e) ;

pr in tk (”SCT Defender : v e r i f y i n g s y s c a l l t a b l e i n t e g r i t y . . . \ n”) ;

i f (! s y s c a l l t a b l e s c a n ())

pr in tk (” Fa i l ed ! ! \ n”) ;

e lse

pr intk (”Done .\n”) ;

c l o n e t a b l e () ;

c o r r e c t s y s c a l l t a b l e = kmalloc (SYS CALL TABLE SIZE , GFP KERNEL) ;

s y s c a l l h o o k (c o r r e c t s y s c a l l t a b l e , s y s c a l l t a b l e) ;

84

i f (! v e r i f y s y s c a l l j m p ())

pr in tk (”WARNING: s y s t e m c a l l jump modified !\n”) ;

e lse

pr intk (” S y s t e m c a l l jump OK\n”) ;

for (i = 0 ; i <255; i ++){

i f (! v e r i f y i n l i n e (i))

pr in tk (” I n l i n e hook found in system c a l l %d!\n” , i) ;

}

pr intk (”SCT Defender : Active .\n”) ;

return 0 ;

}

void cleanup module (void){

/∗ unhooks t h e s y s c a l l s ∗ /

sys ca l l unhook () ;

pr in tk (”SCT Defender e x i t i n g . . . \ n”) ;

}

MODULE LICENSE(”GPL”) ;

MODULE AUTHOR(AUTHOR) ;

MODULE DESCRIPTION(VERSION) ;

— End of “sctdefender.c” —

— Begin of “sctdefender.h” —

ifndef MAIN

define MAIN

define PROCKALLSYMS ”/proc/kallsyms ”

define MODNAME ” sctdefender ”

define SCT SIZE 256

define HEXSIZE 8

define SYS CALL TABLE SIZE SCT SIZE ∗ 4

void s y s c a l l h o o k (void ∗∗ , void ∗∗) ;

unsigned long p r o c e s s c a l l (i n t cal l number) ;

i f d e f CONFIG FRAME POINTER

85

define STUB CODE(sys ca l l number) \

unsigned long j m p s y s c a l l = p r o c e s s c a l l (sys ca l l number) ; \

asm (”movl %0, %%edx” : : ” r ” (j m p s y s c a l l)) ; \

asm (”mov %ebp , %esp ; ” \

”pop %ebp”) ; \

asm (”jmp ∗%edx”) ;

else

define STUB CODE(sys ca l l number) \

unsigned long j m p s y s c a l l = p r o c e s s c a l l (sys ca l l number) ; \

asm (”movl %0, %%edx” : : ” r ” (j m p s y s c a l l)) ; \

asm (”jmp ∗%edx”) ;

endif

endif / / MAIN

— End of “sctdefender.h” —

— Begin of “syscalls.c” —

include <asm/uaccess . h>

include ”main . h”

s t a t i c asmlinkage void s y s c a l l s t u b 0 (void){ STUB CODE (0) ; }

s t a t i c asmlinkage void s y s c a l l s t u b 1 (void){ STUB CODE (1) ; }

s t a t i c asmlinkage void s y s c a l l s t u b 2 (void){ STUB CODE (2) ; }

. . . (repeated u n t i l 255) . . .

s t a t i c asmlinkage void s y s c a l l s t u b 2 5 5 (void){ STUB CODE (2 5 5) ; }

void s y s c a l l h o o k (void ∗∗ s y s c a l l t a b l e , void ∗∗ c o r r e c t s y s c a l l t a b l e){

i n t i ;

c o r r e c t s y s c a l l t a b l e [0] = s y s c a l l s t u b 0 ;

c o r r e c t s y s c a l l t a b l e [1] = s y s c a l l s t u b 1 ;

c o r r e c t s y s c a l l t a b l e [2] = s y s c a l l s t u b 2 ;

. . . (repeated u n t i l 255) . . .

c o r r e c t s y s c a l l t a b l e [2 5 5] = s y s c a l l s t u b 2 5 5 ;

/ / s y s c a l l t a b l e [2 4] = c o r r e c t s y s c a l l t a b l e [2 4] ;

for (i = 0 ; i < SCT SIZE ; i ++) {

s y s c a l l t a b l e [i] = c o r r e c t s y s c a l l t a b l e [i] ;

}

}

— End of “syscalls.c” —

86

Glossary

API Application Programming Interface

CPU Central Processing Unit

DKOM Direct Kernel Object Manipulation

DLL Dynamic Link Library

DMA Direct Memory Access

DR0-7 Debug Registers (0 to 7)

DSO Dynamic Shared Objects

EIP Extended Instruction Pointer

ELF Executable and Linkable Format

GOT Global Offset Table

HIDS Host-Based Intrusion Detection System

HIPS Host-Based Intrusion Prevention System

IAT Import Address Table

IDS Intrusion Detection System

IDT Interrupt Descriptor Table

IDTR Interrupt Descriptor Table Register

IRP IO Request Packet

ISR Interrupt Service Routine

LKM Linux Kernel Module

87

OS Operating System

PCI Peripheral Component Interconnect

PEB Process Environment Block

PID Process ID

PLT Procedure Linkage Table

SEH Structured Exception Handler

SSDT System Service Dispatch Table

SVV System Virginity Checker

VFS Virtual File System

VMA Virtual Memory Areas

88

	Introduction
	Motivation
	Goals
	Structure of the Document

	State of the Art
	Introduction
	General Malware Classification
	How do Rootkits work
	Application level
	Library level
	Kernel Level

	Hiding techniques
	Hooking
	What to hook?
	How to hook?

	Direct Kernel Object Manipulation
	Raw access to the physical memory
	Layered Filter Drivers
	DLL/Code Injection

	Detecting and Preventing
	Signature based detection
	Heuristic based prevention
	Integrity Check detection
	Crossview based detection
	Detecting DKOM
	Detecting Hooks

	Anti-Rootkit Software Analysis
	System Virginity Verifier
	Tripwire
	VICE
	Hijacking anti-rootkit software

	Summary

	User-Land
	Introduction
	Accessing the address space of a process
	Hooking techniques
	Function hooking via code section modification
	PLT Injection
	Hardware breakpoint hooking

	Defenses
	Detecting program byte code changes
	Understanding memory mapping
	Using /proc/<pid>/maps
	Finding .text section offset in memory

	Detecting and preventing Hardware Breakpoint Hooking
	Finding sys_call_table in Linux Kernel 2.6
	Formulating a pattern for detection

	Summary

	Kernel-Land
	Introduction
	Attacking the Kernel
	Simple system call redirection
	Inline hooking Kernel functions
	Hooking interrupt 0x80 / Sysenter instruction
	Runtime Kernel patching

	Detecting the attacks
	Kernel Integrity Checking
	A Proactive Detection Approach

	Summary

	Results and discussion
	Introduction
	Process code integrity scanner
	Execution
	Problems
	Other approaches

	Hardware breakpoint hooking attack
	Execution
	Analysis of stealth

	Preventing hardware breakpoint hooking
	Execution
	Problems

	Kernel Proactive Detection Approach
	Execution
	Performance Tests
	Problems

	Summary

	Conclusions
	Future Work

	I Appendices
	Glossary

